Repository and Mutation based Particle Swarm Optimization (RMPSO): A new PSO variant applied to reconstruction of Gene Regulatory Network (original) (raw)

Reconstructing Gene Regulatory Network with Enhanced Particle Swarm Optimization

Lecture Notes in Computer Science, 2014

Inferring regulations among the genes is a well-known and significantly important problem in systems biology for revealing the fundamental cellular processes. Although computational models can be used as tools to extract the probable structure and dynamics of such networks from gene expression data, capturing the complex nonlinear system dynamics is a challenging task. In this paper, we have proposed a method to reverse engineering Gene Regulatory Network (GRN) from microarray data. Inspired from the biologically relevant optimization algorithm 'Particle Swarm Optimization' (PSO), we have enhanced the PSO incorporating two genetic algorithm operators, namely crossover and mutation. Furthermore, Linear Time Variant (LTV) Model is employed to modeling the GRN appropriately. In the evaluation, the proposed method shows superiority over the state-of-the-art methods when tested with synthetic network, both for the noise free and noise in data. The strength of the proposed method has also been verified by analyzing the real expression data set of SOS DNA repair system in Escherichia coli.

Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization

Neural Networks, 2007

In the last decade, recurrent neural networks (RNNs) have attracted more efforts in inferring genetic regulatory networks (GRNs), using time series gene expression data from microarray experiments. This is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. However, RNNs are well known for training difficulty. Traditional gradient descent-based methods are easily stuck in local minima and the computation of the derivatives is also not always possible. Here, the performance of three evolutionary-swarm computation technology-based methods, known as differential evolution (DE), particle swarm optimization (PSO), and the hybrid of DE and PSO (DEPSO), in training RNNs is investigated. Furthermore, the gene networks are reconstructed via the identification of the gene interactions, which are explained through corresponding connection weight matrices. The experimental results on two data sets studied in this paper demonstrate that the DEPSO algorithm performs better in RNN training. Also, the RNN-based model can provide meaningful insight in capturing the nonlinear dynamics of genetic networks and revealing genetic regulatory interactions.

Gene Regulatory Network Inference Using Prominent Swarm Intelligence Methods

2017

Genes are the basic blue print of life in an organism containing the physiological and behavioral characteristics. A gene regulatory network (GRN) is a set of genes, or parts of genes, that interact with each other to control a specific cell function. GRN inference is the reverse engineering approach to predict the biological network from the gene expression data. Biochemical system theory based S-System is a popular model in GRN inference and the model is defined with its different parameters. The task of S-System based GRN inference is its parameter estimation which is an optimization problem. Several studies employed Particle Swarm Optimization (PSO) and other pioneer optimization techniques to estimate S-System model. In this paper several prominent swarm intelligence (SI) techniques have been studied and adapted for S-System parameter estimation. They are Group Search Optimizer, Grey Wolf Optimizer and PSO. Proficiency of optimization techniques are compared to infer GRN from S...

Gene network inference using a swarm intelligence framework

Proceedings of the 11th annual conference companion on Genetic and evolutionary computation conference - GECCO '09, 2009

In this paper, we present a framework for inferring gene regulatory networks from gene expression time series. A modelbased approach is adopted, according to which the quality of a candidate architecture is evaluated by assessing the ability of the corresponding trained model to reproduce the available dynamics. Candidate architectures are generated in the context of the ant colony optimization (ACO) meta-heuristic and model training is performed using particle swarm optimization (PSO). We propose a novel solution construction heuristic for artificial ants, based on growth and preferential attachment, in order to generate candidate structures that adhere to well-known gene network properties. Preliminary results using an artificial network demonstrate the potential of the framework to infer the underlying network architecture to a promising degree of success.

Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

Intelligent Framework With Controlled Behavior for Gene Regulatory Network Reconstruction

International Journal of Information Retrieval Research, 2022

Gene Regulatory Networks (GRNs) are the pioneering methodology for finding new gene interactions getting insights of the biological processes using time series gene expression data. It remains a challenge to study the temporal nature of gene expression data that mimic complex non-linear dynamics of the network. In this paper, an intelligent framework of recurrent neural network (RNN) and swarm intelligence (SI) based Particle Swarm Optimization (PSO) with controlled behaviour has been proposed for the reconstruction of GRN from time-series gene expression data. A novel PSO algorithm enhanced by human cognition influenced by the ideology of Bhagavad Gita is employed for improved learning of RNN. RNN guided by the proposed algorithm simulates the nonlinear and dynamic gene interactions to a greater extent. The proposed method shows superior performance over traditional SI algorithms in searching biologically plausible candidate networks. The strength of the method is verified by analy...

Gene regulatory network model identification using artificial bee colony and swarm intelligence

2012 IEEE Congress on Evolutionary Computation, 2012

Gene association/interaction networks have complex structures that provide a better understanding of mechanisms at the molecular level that govern essential processes inside the cell. The interaction mechanisms are conventionally modeled by nonlinear dynamic systems of coupled differential equations (Ssystems) adhering to the power-law formalism. Our implementation adopts an S-system that is rich enough in structure to capture the dynamics of the gene regulatory networks (GRN) of interest. A comparison of three widely used population-based techniques, namely evolutionary algorithms (EAs), local best particle swarm optimization (PSO) with random topology, and artificial bee colony (ABC) are performed in this study to rapidly identify a solution to inverse problem of GRN reconstruction for understanding the dynamics of the underlying system. A simple yet effective modification of the ABC algorithm, shortly ABC* is proposed as well and tested on the GRN problem. Simulation results on two small-size and a medium size hypothetical gene regulatory networks confirms that the proposed ABC* is superior to all other search schemes studied here.

Inference of Gene Regulatory Networks from Time Course Gene Expression Data Using Neural Networks and Swarm Intelligence

2006

We present a novel algorithm that combines a recurrent neural network (RNN) and two swarm intelligence (SI) methods to infer a gene regulatory network (GRN) from time course gene expression data. The algorithm uses ant colony optimization (ACO) to identify the optimal architecture of an RNN, while the weights of the RNN are optimized using particle swarm optimization (PSO). Our goal is to construct an RNN whose response mimics gene expression data generated by time course DNA microarray experiments. We observed promising results in applying the proposed hybrid SI-RNN algorithm to infer networks of interaction from simulated and real-world gene expression data

Swarm Intelligence based Gene Classification

The classification of genes is quite important in the understanding of gene regulation. The genes are grouped into transcription units for the purpose of construction and regulation of gene expression and synthesis of proteins. This knowledge further contributes as essential information for the process of drug design and to determine the protein functions of newly sequenced genomes. It is possible to use the diverse biological information across multiple genomes as an input to the classification problem. The purpose of this work is to show that Particle Swarm Optimization may improve the results of classification as compared to other algorithms. To validate the approach E.Coli complete genome is taken as the benchmark genome

Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm

The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.