Local Orbital Forcing of Antarctic Climate Change During the Last Interglacial (original) (raw)
Related papers
Orbitally driven changes in seasonal Antarctic temperature during the Holocene
2021
Disentangling the drivers of mean annual temperature change in Antarctica requires an understanding of seasonal temperature change. A high-resolution climate record capable of resolving summer and winter seasons could address long-standing questions about the role of orbitally-driven insolation in driving Antarctic mean-annual temperature change. Here, we present a continuous record of water isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core that reveals both summer and winter temperature change though the last 11,000 years. This novel record shows that summer temperatures increased through the early-to-mid Holocene, reached a plateau at 4 to 2 ka, and then decreased to the present. The observed changes are explained primarily by changes in maximum summer insolation. In the early to mid-Holocene, additional summer warming results from the retreat and thinning of the WAIS. The magnitude of summer temperature change constrains the lowering of the WAIS surface to l...
Antarctic climate history and global climate changes
Oxford Handbooks Online, 2017
Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO 2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.