A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus (original) (raw)

Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus)

Cerebral Cortex, 2018

Using stereological analysis of NeuN-stained sections, we investigated neuronal density and number of neurons per column throughout the marmoset cortex. Estimates of mean neuronal density encompassed a greater than 3-fold range, from >150 000 neurons/mm3 in the primary visual cortex to ~50 000 neurons/mm3 in the piriform complex. There was a trend for density to decrease from posterior to anterior cortex, but also local gradients, which resulted in a complex pattern; for example, in frontal, auditory, and somatosensory cortex neuronal density tended to increase towards anterior areas. Anterior cingulate, motor, premotor, insular, and ventral temporal areas were characterized by relatively low neuronal densities. Analysis across the depth of the cortex revealed greater laminar variation of neuronal density in occipital, parietal, and inferior temporal areas, in comparison with other regions. Moreover, differences between areas were more pronounced in the supragranular layers than ...

A Web-Based Atlas Combining MRI and Histology of the Squirrel Monkey Brain

Neuroinformatics, 2018

The squirrel monkey (Saimiri sciureus) is a commonly-used surrogate for humans in biomedical research. In the neuroimaging community, MRI and histological atlases serve as valuable resources for anatomical, physiological, and functional studies of the brain; however, no digital MRI/histology atlas is currently available for the squirrel monkey. This paper describes the construction of a web-based multi-modal atlas of the squirrel monkey brain. The MRI-derived information includes anatomical MRI contrast (i.e., T2-weighted and proton-density-weighted) and diffusion MRI metrics (i.e., fractional anisotropy and mean diffusivity) from data acquired both in vivo and ex vivo on a 9.4 Tesla scanner. The histological images include Nissl and myelin stains, co-registered to the corresponding MRI, allowing identification of cyto-and myeloarchitecture. In addition, a bidirectional neuronal tracer, biotinylated dextran amine (BDA) was injected into the primary motor cortex, enabling highly specific identification of regions connected to the injection location. The atlas integrates the results of common image analysis methods including diffusion tensor imaging glyphs, labels of 57 white-matter tracts identified using DTItractography, and 18 cortical regions of interest identified from Nissl-revealed cyto-architecture. All data are presented in a common space, and all image types are accessible through a web-based atlas viewer, which allows visualization and interaction of user-selectable contrasts and varying resolutions. By providing an easy to use reference system of anatomical information, our webaccessible multi-contrast atlas forms a rich and convenient resource for comparisons of brain findings across subjects or modalities. The atlas is called the Combined Histology-MRI Integrated Atlas of the Squirrel Monkey (CHIASM). All images are accessible through our web-based viewer (https://chiasm.vuse.vanderbilt.edu/), and data are available for download at (https:// www.nitrc.org/projects/smatlas/).

A brain MRI atlas of the common squirrel monkey,Saimiri sciureus

Proceedings of SPIE, 2014

The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Ex vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

A brain MRI atlas of the common squirrel monkey,Saimiri sciureus

SPIE Proceedings, 2014

The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Ex vivo MRI acquisitions include T2 structural imaging and diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

Structural and quantitative neuroimaging of the common marmoset monkey using a clinical MRI system

Journal of Neuroscience Methods, 2013

h i g h l i g h t s Structural and quantitative MRI techniques transferred from humans to common marmoset monkeys on a clinical 3T scanner. T1-w and T2-w MRI and multi-parametric mapping can be run under injection anesthesia at 0.4 mm resolution. Cortical layers and axon-rich areas can be seen on magnetization transfer (MT) and T1 maps at 0.33 mm resolution. T1 and MT were comparable to humans, but smaller R2* in basal ganglia indicated lower iron content in marmosets. A disease model (experimental autoimmune encephalomyelitis) and dynamic mapping of contrast agent excretion are presented.

The Brain/MINDS 3D digital marmoset brain atlas

Scientific Data, 2018

We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, m...

Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains

bioRxiv (Cold Spring Harbor Laboratory), 2023

Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.

A digital 3D atlas of the marmoset brain based on multi-modal MRI

NeuroImage, 2018

The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parce...

The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species

Primates; journal of primatology, 2018

Advances in magnetic resonance imaging (MRI) and computational analysis technology have enabled comparisons among various primate brains in a three-dimensional electronic format. Results from comparative studies provide information about common features across primates and species-specific features of neuroanatomy. Investigation of various species of non-human primates is important for understanding such features, but the majority of comparative MRI studies have been based on experimental primates, such as common marmoset, macaques, and chimpanzee. A major obstacle has been the lack of a database that includes non-experimental primates' brain MRIs. To facilitate scientific discoveries in the field of comparative neuroanatomy and brain evolution, we launched a collaborative project to develop an open-resource repository of non-human primate brain images obtained using ex vivo MRI. As an initial open resource, here we release a collection of structural MRI and diffusion tensor ima...

Comparative Functional Anatomy of Marmoset Brains

ILAR Journal

Marmosets and closely related tamarins have become popular models for understanding aspects of human brain organization and function because they are small, reproduce and mature rapidly, and have few cortical fissures so that more cortex is visible and accessible on the surface. They are well suited for studies of development and aging. Because marmosets are highly social primates with extensive vocal communication, marmoset studies can inform theories of the evolution of language in humans. Most importantly, marmosets share basic features of major sensory and motor systems with other primates, including those of macaque monkeys and humans with larger and more complex brains. The early stages of sensory processing, including subcortical nuclei and several cortical levels for the visual, auditory, somatosensory, and motor systems, are highly similar across primates, and thus results from marmosets are relevant for making inferences about how these systems are organized and function i...