Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties (original) (raw)

Abstract

sparkles

AI

This research assesses the impact of gene flow from modern maize varieties (MVs) to maize landraces (LRs) and wild relatives (WRs) in Mexico over a period exceeding 70 years. Genetic data indicate that contemporary gene flow has resulted in increased genetic diversity in LRs after 2000 and a decrease in genetic divergence between MVs and both LRs and WRs. Findings suggest ongoing evolutionary changes in maize's genetic pools, highlighting the need for strategies to conserve these important resources.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (95)

  1. S. B. Brush, In situ conservation of landraces in centers of crop diversity. Crop Sci. 35, 346-354 (1995).
  2. P. Gepts, Plant genetic resources conservation and utilization. Crop Sci. 46, 2278-2292 (2006).
  3. Convention on Biological Diversity, Aichi Biodiversity Targets (Convention on Bi- ological Diversity, 2010). https://www.cbd.int/sp/targets/. Accessed 26 September 2018.
  4. M. C. Arteaga et al., Genomic variation in recently collected maize landraces from Mexico. Genom. Data 7, 38-45 (2015).
  5. J. F. Doebley, M. M. Goodman, C. W. Stuber, Isoenzymatic variation in Zea (Gramineae). Syst. Bot. 9, 203-218 (1984).
  6. Y. Vigouroux et al., An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169, 1617-1630 (2005).
  7. A. Eyre-Walker, R. L. Gaut, H. Hilton, D. L. Feldman, B. S. Gaut, Investigation of the bottleneck leading to the domestication of maize. Proc. Natl. Acad. Sci. U.S.A. 95, 4441-4446 (1998).
  8. L. Wang et al., The interplay of demography and selection during maize domestica- tion and expansion. Genome Biol. 18, 215 (2017).
  9. M. B. Hufford et al., The genomic signature of crop-wild introgression in maize. PLoS Genet. 9, e1003477 (2013).
  10. A. Piñeyro-Nelson et al., Transgenes in Mexican maize: Molecular evidence and methodological considerations for GMO detection in landrace populations. Mol. Ecol. 18, 750-761 (2009).
  11. S. Ortiz-García et al., Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004). Proc. Natl. Acad. Sci. U.S.A. 102, 12338-12343 (2005).
  12. D. Quist, I. H. Chapela, Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414, 541-543 (2001).
  13. E. Bitocchi et al., European flint landraces grown in situ reveal adaptive introgression from modern maize. PLoS One 10, e0121381 (2015).
  14. J. A. Serratos, Gene Flow Among Maize Landraces, Improved Maize Varieties, and Teosinte: Implications for Transgenic Maize, J. A. Serratos, M. A. Willcox, F. Castillo, Eds. (CIMMYT, 1997).
  15. M. van de Wouw, C. Kik, T. van Hintum, R. van Treuren, B. Visser, Genetic erosion in crops: Concept, research results and challenges. Plant Genet. Resour. 8, 1-15 (2010).
  16. J. van Heerwaarden, J. Hellin, R. F. Visser, F. A. van Eeuwijk, Estimating maize genetic erosion in modernized smallholder agriculture. Theor. Appl. Genet. 119, 875-888 (2009).
  17. J. F. Crow, 90 years ago: The beginning of hybrid maize. Genetics 148, 923-928 (1998).
  18. K. A. Steele et al., Has the introduction of modern rice varieties changed rice genetic diversity in a high-altitude region of Nepal? Field Crops Res. 113, 24-30 (2009).
  19. E. Bitocchi et al., Introgression from modern hybrid varieties into landrace pop- ulations of maize (Zea mays ssp. mays L.) in central Italy. Mol. Ecol. 18, 603-621 (2009).
  20. R. A. Ortega Paczka, Variación en maíz y cambios socioeconómicos en Chiapas, Méx. 1946-1971. M.Sc. thesis, Colegio de Postgraduados, Chapingo, Mexico (1973).
  21. S. B. Brush, J. E. Taylor, M. R. Bellon, Technology adoption and biological diversity in Andean potato agriculture. J. Dev. Econ. 39, 365-387 (1992).
  22. M. R. Bellon, S. B. Brush, Keepers of maize in Chiapas, Mexico. Econ. Bot. 48, 196-209 (1994).
  23. E. J. Wellhausen, El mejoramiento del maíz en México: Avances actuales y proyección hacia el futuro. Revista de la Sociedad Mexicana de Historia Natural 21, 435-462 (1961).
  24. R. E. Evenson, D. Gollin, Assessing the impact of the green revolution, 1960 to 2000. Science 300, 758-762 (2003).
  25. G. S. Khush, Green revolution: The way forward. Nat. Rev. Genet. 2, 815-822 (2001).
  26. CIMMYT, CIMMYT review 1976 (CIMMYT, 1976). https://repository.cimmyt.org/xmlui/ handle/10883/3599. Accessed 27 May 2018.
  27. D. M. Jones, The Green Revolution in America: Success or Failure? (University of Texas Press, 1977), pp. 55-63.
  28. M. R. Bellon, J. Risopoulos, Small-scale farmers expand the benefits of improved maize germplasm: A case study from Chiapas, Mexico. World Dev. 29, 799-811 (2001).
  29. J. A. García-Salazar, R. Ramírez-Jaspeado, El mercado de la semilla mejorada de maíz (Zea mays L.) en México: Análisis del saldo comercial por entidad federativa. Rev. Fitotec. Mex. 37, 69-77 (2014).
  30. B. M. Luna Mena, M. A. Hinojosa Rodríguez, Ó. J. Ayala Garay, F. Castillo González, J. A. Mejía Contreras, Perspectivas de desarrollo de la industria semillera de maíz en México. Rev. Fitotec. Mex. 35, 1-7 (2012).
  31. G. Aboites, F. Martínez, G. Torres, El negocio de la producción de semillas mejoradas y su rol en el proceso de privatización de la agricultura mexicana. Espiral Estudios sobre Estado y Sociedad 6, 151-185 (1999).
  32. A. Espinosa-Calderón et al., Ley de Semillas y Ley Federal de Variedades Vegetales y transgénicos de maíz en México. Rev. Mex. Cienc. Agric. 5, 293-308 (2014).
  33. SIAP, Uso de tecnología y de servicios en el campo Cuadros tabulares 2016 (Servicio de Información Agroalimentaria y Pesquera, 2016). https://www.gob.mx/siap/documentos/ tecnificacion. Accessed 5 June 2018.
  34. M. L. Donnet et al., El potencial de mercado de semillas mejoradas de maíz en México (CIMMYT, 2012).
  35. M. R. Bellon et al., Evolutionary and food supply implications of ongoing maize do- mestication by Mexican campesinos. Proc. Biol. Sci. 285, 20181049 (2018).
  36. R. H. Perales, S. B. Brush, C. O. Qualset, Landraces of Maize in Central Mexico: An altitudinal transect. Econ. Bot. 57, 7-20 (2003).
  37. M. R. Bellon, J. E. Taylor, "Folk" soil taxonomy and the partial adoption of new seed varieties. Econ. Dev. Cult. Change 41, 763-786 (1993).
  38. J. A. Zarazua-Escobar, G. Almaguer-Vargas, J. G. Ocampo-Ledesma, The direct field support program (PROCAMPO) from and its impact on agricultural productive and commercial knowledge management in Estado de México. Agric. Soc. Desarro. 8, 89-105 (2011).
  39. R. H. Perales, S. B. Brush, C. O. Qualset, Dynamic management of maize landraces in Central Mexico. Econ. Bot. 57, 21-34 (2003).
  40. C. U. Miramontes-Piña, Situación actual y perspectivas del maíz en México 1996-2010 (SIAP Distrito Federal, México, 2006).
  41. M. R. Bellon, J. Berthaud, Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers' behavior. Plant Physiol. 134, 883-888 (2004).
  42. Y. Matsuoka et al., A single domestication for maize shown by multilocus micro- satellite genotyping. Proc. Natl. Acad. Sci. U.S.A. 99, 6080-6084 (2002).
  43. D. R. Piperno, A. J. Ranere, I. Holst, J. Iriarte, R. Dickau, Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106, 5019-5024 (2009).
  44. A. J. Ranere, D. R. Piperno, I. Holst, R. Dickau, J. Iriarte, The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106, 5014-5018 (2009).
  45. J. J. Sánchez González et al., Ecogeography of teosinte. PLoS One 13, e0192676 (2018).
  46. E. Anderson, H. C. Cutler, Races of Zea Mays: I. Their recognition and classification. Ann. Mo. Bot. Gard. 29, 69-88 (1942).
  47. R. J. Elshire et al., A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379 (2011).
  48. CONABIO, Proyecto global de maíces nativos (Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad, 2011). https://www.biodiversidad.gob.mx/genes/proyectoMaices.html. Accessed 23 April 2018.
  49. K. Fukunaga et al., Genetic diversity and population structure of teosinte. Genetics 169, 2241-2254 (2005).
  50. K. Herten, M. S. Hestand, J. R. Vermeesch, J. K. J. Van Houdt, GBSX: A toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics 16, 73 (2015).
  51. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina se- quence data. Bioinformatics 30, 2114-2120 (2014).
  52. F. J. Sedlazeck, P. Rescheneder, A. von Haeseler, NextGenMap: Fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790-2791 (2013).
  53. H. Li et al.; 1000 Genome Project Data Processing Subgroup, The sequence alignment/ map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
  54. A. McKenna et al., The genome analysis toolkit: A MapReduce framework for ana- lyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010).
  55. P. Danecek et al.; 1000 Genomes Project Analysis Group, The variant call format and VCFtools. Bioinformatics 27, 2156-2158 (2011).
  56. I. C. Rojas-Barrera et al., Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Open Science Framework (OSF). https://osf.io/pqvt4/. Deposited 9 September 2019.
  57. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664 (2009).
  58. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
  59. E. Y. Durand, N. Patterson, D. Reich, M. Slatkin, Testing for ancient admixture be- tween closely related populations. Mol. Biol. Evol. 28, 2239-2252 (2011).
  60. R. J. Kulathinal, L. S. Stevison, M. A. F. Noor, The genomics of speciation in Drosophila: Diversity, divergence, and introgression estimated using low-coverage genome se- quencing. PLoS Genet. 5, e1000550 (2009).
  61. R. E. Green et al., A draft sequence of the Neandertal genome. Science 328, 710-722 (2010).
  62. J. Yan et al., Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4, e8451 (2009).
  63. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
  64. P. J. Bradbury et al., TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635 (2007).
  65. M. C. Romay et al., Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14, R55 (2013).
  66. X. Zheng et al., A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326-3328 (2012).
  67. M. N. Price, P. S. Dehal, A. P. Arkin, FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641-1650 (2009).
  68. J. d. J. Sánchez González et al., Distribución geográfica del teocintle (Zea spp.) en México y situación actual de las poblaciones (CONABIO, 2008). https:// www.biodiversidad.gob.mx/genes/pdf/proyecto/Anexo8\_ResultadosProyectos/FZ002/ Informe%20final/Teocintle/Informe-Fina%20Teocintle_FZ002.pdf. Accessed 27 June 2018.
  69. J. van Heerwaarden et al., Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl. Acad. Sci. U.S.A. 108, 1088-1092 (2011).
  70. M. Bjarnason, Ed., The Subtropical, Midaltitude, and Highland Maize Subprogram (CIMMYT, 1994).
  71. C. Jiang et al., Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet. 99, 1106-1119 (1999).
  72. K. Mercer, Á. Martínez-Vásquez, H. R. Perales, Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evol. Appl. 1, 489-500 (2008).
  73. M. G. Vázquez Carrillo et al., Interacción genotipo-ambiente del rendimiento y calidad de grano y tortilla de híbridos de maíz en Valles Altos de Tlaxcala, México. Rev. Fitotec. Mex. 35, 229-237 (2012).
  74. M. Tadeo Robledo et al., Productividad de variedades precoces de maíz de grano amarillo para Valles Altos. Rev. Mex. Cienc. Agric. 3, 1417-1423 (2012).
  75. M. Trtikova et al., Teosinte in Europe-Searching for the origin of a novel weed. Sci. Rep. 7, 1560 (2017).
  76. CIMMYT, Maize production regions in developing countries (CIMMYT, 1988). https:// repository.cimmyt.org/xmlui/handle/10883/705. Accessed 5 June 2018.
  77. M. R. Bellon, D. Hodson, J. Hellin, Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc. Natl. Acad. Sci. U.S.A. 108, 13432-13437 (2011).
  78. L. de La Cruz Larios, "Sistemas de incompatibilidad genética en maíz y teocintle (Zea spp.) en México," PhD thesis, Universidad de Guadalajara, Guadalajara, Mexico (2007). http://repositorio.cucba.udg.mx:8080/xmlui/bitstream/handle/123456789/5149/ Gonzalez_Ledesma_J_Santos.pdf?sequence=1. Accessed 8 June 2018.
  79. J. M. Padilla García et al., Incompatibilidad gametofítica en las razas mexicanas de maíz. Rev. Mex. Cienc. Agric. 3, 525-537 (2012).
  80. B. M. Baltazar, J. de Jesús Sánchez-Gonzalez, L. de la Cruz-Larios, J. B. Schoper, Pol- lination between maize and teosinte: An important determinant of gene flow in Mexico. Theor. Appl. Genet. 110, 519-526 (2005).
  81. M. B. Hufford et al., Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808-811 (2012).
  82. K. E. Holsinger, B. S. Weir, Genetics in geographically structured populations: De- fining, estimating and interpreting F(ST). Nat. Rev. Genet. 10, 639-650 (2009).
  83. J. Doebley, Molecular evidence for gene flow among Zea species. Bioscience 40, 443- 448 (1990).
  84. P. R. Aquino Mercado, R. J. Peña Bautista, I. Ortiz-Monasterio, México y el CIMMYT (CIMMYT, 2008). https://repository.cimmyt.org/handle/10883/657\. Accessed 23 April 2018.
  85. M. L. Morris, Impactos del mejoramiento de maíz en América Latina, 1966-1997 (CIMMYT, 2000).
  86. A. Menkir, A. Melake-Berhan, C. The, I. Ingelbrecht, A. Adepoju, Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theor. Appl. Genet. 108, 1582-1590 (2004).
  87. L. Excoffier, N. Ray, Surfing during population expansions promotes genetic revolu- tions and structuration. Trends Ecol. Evol. 23, 347-351 (2008).
  88. A. J. Trueba Carranza, Semillas mexicanas mejoradas de maíz: Su potencial productivo (Estado de México: Colegio de Postgraduados, 2012).
  89. E. Bellucci et al., Population structure of barley landrace populations and gene-flow with modern varieties. PLoS One 8, e83891 (2013).
  90. G. A. Dyer, A. López-Feldman, A. Yúnez-Naude, J. E. Taylor, Genetic erosion in maize's center of origin. Proc. Natl. Acad. Sci. U.S.A. 111, 14094-14099 (2014).
  91. S. B. Brush et al., Assessing maize genetic erosion. Proc. Natl. Acad. Sci. U.S.A. 112, E1 (2015).
  92. G. A. Dyer, A. López-Feldman, A. Yúnez-Naude, J. E. Taylor, J. Ross-Ibarra, Reply to Brush et al.: Wake-up call for crop conservation science. Proc. Natl. Acad. Sci. U.S.A. 112, E2 (2015).
  93. D. Louette, A. Charrier, J. Berthaud, In situ conservation of maize in Mexico: Genetic diversity and maize seed management in a traditional community. Econ. Bot. 51, 20- 38 (1997).
  94. D. Byerlee, E. H. de Polanco, Farmers' stepwise adoption of technological packages: Evidence from the Mexican Altiplano. Am. J. Agric. Econ. 68, 519-527 (1986).
  95. D. P. Faith et al., Evosystem services: An evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2, 66-74 (2010).