HMGA2 Participates in Transformation in Human Lung Cancer (original) (raw)
Related papers
HMGA2 as a Critical Regulator in Cancer Development
Genes, 2021
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnost...
HMGA2 overexpression in non-small cell lung cancer
Molecular Carcinogenesis, 2007
Lung cancer is still the leading cause of death from cancer worldwide primarily because of the fact that most lung cancers are diagnosed at advanced stages. Overexpression of the high mobility group protein HMGA2 has been observed in a variety of malignant tumors and often correlates with poor prognosis. Herein, HMGA2 expression levels were analyzed in matching cancerous and non-cancerous lung samples of 17 patients with adenocarcinoma (AC) and 17 patients with squamous cell carcinoma (SCC) with real-time quantitative RT-PCR (qRT-PCR). Transcript levels were compared to results obtained by immunohistochemistry (IHC). HMGA2 expression was detectable by qRT-PCR in all samples tested and varied from 5422 to 16 991 545 copies per 250 ng total RNA in the carcinoma samples and from 289 to 525 947 copies in the non-cancerous tissue samples. In 33/34 non-small cell lung cancer (NSCLC) samples tested, an overexpression of HMGA2 was revealed with statistically highly significant differences between non-neoplastic and tumor samples for both AC (P < 0.0001) as well as for SCC (P < 0.0001). Expression varies strongly and is increased up to 911-fold for AC and up to 2504-fold for SCC, respectively, with statistically significant higher increase in SCC (P < 0.05). The results presented herein indicate that HMGA2 overexpression is a common event in NSCLC and could serve as molecular marker for lung cancer.
Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis
International Journal of Molecular Sciences
High-mobility group protein 1 (HMGA1) participates in the processes of DNA transcription, replication, recombination, and repair. The HMGA1 gene is expressed abundantly during embryogenesis and is reactivated during carcinogenesis. HMGA1 gene expression has been associated with a high degree of malignancy, metastatic tendency, and poor survival in breast, colon, ovary, and pancreatic cancers. However, its prognostic significance in lung cancer remains unclear. Using publicly available data, HMGA1 was shown to be overexpressed in both small and non-small lung tumors, with higher expression compared to both the adjacent non-malignant lung tissues and non-tumor lung tissues of healthy individuals. Elevated HMGA1 expression could result from lowered HMGA1 methylation and was connected with some clinicopathological features like sex, age, and stage of the disease. The high HMGA1 expression level was connected with shorter overall and first progression survival time among lung adenocarcin...
Upregulation of MMP-2 by HMGA1 Promotes Transformation in Undifferentiated, Large-Cell Lung Cancer
Molecular Cancer Research, 2009
Although lung cancer is the leading cause of cancer death worldwide, the precise molecular mechanisms that give rise to lung cancer are incompletely understood. Here, we show that HMGA1 is an important oncogene that drives transformation in undifferentiated, large-cell carcinoma. First, we show that the HMGA1 gene is overexpressed in lung cancer cell lines and primary human lung tumors. Forced overexpression of HMGA1 induces a transformed phenotype with anchorage-independent cell growth in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA1 expression blocks anchorage-independent cell growth in the H1299 metastatic, undifferentiated, large-cell human lung carcinoma cells. We also show that the matrix metalloproteinase-2 (MMP-2) gene is a downstream target upregulated by HMGA1 in large-cell carcinoma cells. In chromatin immunoprecipitation experiments, HMGA1 binds directly to the MMP-2 promoter in vivo in large-cell lung cancer cells, but not in squamous cell...
HMGA2 functions as a competing endogenous RNA to promote lung cancer progression
Nature, 2013
Non-small cell lung cancer (NSCLC) is the most prevalent histological cancer subtype worldwide 1 . As the majority of patients present with invasive, metastatic disease 2 , it is vital to understand the basis for lung cancer progression. Hmga2 is highly expressed in metastatic lung adenocarcinoma where it contributes to cancer progression and metastasis 3-6 . Here we show that Hmga2 promotes lung cancer progression by operating as a competing endogenous RNA (ceRNA) 7-11 for the let-7 microRNA (miRNA) family. Hmga2 can promote the transformation of lung cancer cells independent of protein-coding function but dependent upon the presence of let-7 sites; this occurs without changes in the levels of let-7 isoforms, suggesting that Hmga2 affects let-7 activity by altering miRNA targeting. These effects are further observed in vivo, where Hmga2 ceRNA activity drives lung cancer growth, invasion and dissemination. Integrated analysis of miRNA target prediction algorithms and metastatic lung cancer gene expression data reveals the TGF-β co-receptor Tgfbr3 12 as a putative target of Hmga2 ceRNA function. Tgfbr3 expression is regulated by the Hmga2 ceRNA via differential recruitment to Argonaute-2 (Ago2), and TGF-β signalling driven by Tgfbr3 is largely necessary for Hmga2 to promote lung cancer progression. Finally, analysis of NSCLC patient gene expression data reveals that HMGA2 and TGFBR3 are co-ordinately regulated in NSCLC patient material, a vital corollary to ceRNA function. Taken together, these results suggest that Hmga2 promotes lung carcinogenesis as both a protein-coding gene and a non-coding RNA; such dual-function regulation of gene expression networks reflects a novel means by which oncogenes promote disease progression. Correspondence and requests for materials should be addressed to J.D. (julian.downward@cancer.org.uk).. Author Contributions. M.S.K. and J.D. designed the study. M.S.K. and E.A.M. performed the experiments described. M.S.K., P.E., and P.C. conducted bioinformatics analyses. N.M. performed the next-generation sequencing studies. M.M.W. provided necessary reagents and conceptual advice. M.S.K. and J.D. wrote the manuscript.
Molecular and Cellular Pathobiology HMGA 2 Is a Driver of Tumor Metastasis
2013
The non-histone chromatin-binding protein HMGA2 is expressed predominantly in the mesenchyme before its differentiation, but it is also expressed in tumors of epithelial origin. Ectopic expression of HMGA2 in epithelial cells induces epithelial–mesenchymal transition (EMT), which has been implicated in the acquisition of metastatic characters in tumor cells. However, little is known about in vivomodulation of HMGA2 and its effector functions in tumor metastasis. Here, we report that HMGA2 loss of function in a mouse model of cancer reduces tumor multiplicity.HMGA2-positive cellswere identifiedat the invasive frontof humanandmouse tumors. Inaddition, in a mouse allograft model, HMGA2 overexpression converted nonmetastatic 4TO7 breast cancer cells to metastatic cells that homed specifically to liver. Interestingly, expression of HMGA2 enhanced TGFb signaling by activating expression of the TGFb type II receptor, which also localized to the invasive front of tumors. Together our result...
HMGA2 Is a Driver of Tumor Metastasis
Cancer Research, 2013
The non-histone chromatin binding protein HMGA2 is expressed predominantly in the mesenchyme prior to its differentiation, but it is also expressed in tumors of epithelial origin. Ectopic expression of HMGA2 in epithelial cells induces epithelial-mesenchymal transition (EMT), which has been implicated in the acquisition of metastatic characters in tumor cells. However, little is known regarding in vivo modulation of HMGA2 and its effector functions in tumor metastasis. Here we report that HMGA2 loss-offunction in a mouse model of cancer reduces tumor multiplicity. HMGA2positive cells were identified at the invasive front of human and mouse tumors. Additionally, in a mouse allograft model, HMGA2 overexpression converted non-metastatic 4TO7 breast cancer cells to metastatic cells that homed specifically to liver. Interestingly, expression of HMGA2 enhanced TGFβ signaling by activating expression of the TGFβ type II receptor (TGFβRII), which also localized to the invasive front of tumors. Together our results argued that HMGA2 plays a critical role in EMT by activating the TGFβ signaling pathway, thereby inducing invasion and metastasis of human epithelial cancers.
The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development
Current Molecular Medicine, 2016
Background & Objectives-Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also
Molecular Genetics and Genomics
The study aimed to assess the HMGA1 gene expression level in NSCLC patients and to evaluate its association with selected clinicopathological features and overall survival of patients. The expression of the HMGA1, coding non-histone transcription regulator HMGA1, was previously proved to correlate with the ability of cancer cells to metastasize the advancement of the disease. The prognostic value of the HMGA1 expression level was demonstrated in some neoplasms, e.g., pancreatic, gastric, endometrial, hepatocellular cancer, but the knowledge about its role in non-small cell lung cancer (NSCLC) is still limited. Thus, the HMGA1 expression level was evaluated by real-time PCR method in postoperative tumor tissue and blood samples collected at the time of diagnosis, 100 days and 1 year after surgery from 47 NSCLC patients. Mean HMGA1 expression level in blood decreased systematically from the time of cancer diagnosis to 1 year after surgery. The blood HMGA1 expression level 1 year after...
The oncogenic properties of the HMG-I gene family
Cancer research, 2000
The HMG-I gene family encodes high mobility group proteins originally identified as nonhistone chromosomal binding proteins. HMG-I and -Y proteins are alternatively spliced products of the same mRNA; HMG-C is encoded by a separate gene. The HMG-I proteins function as architectural chromatin-binding proteins that bind to the narrow groove of AT-rich regions in double-stranded DNA. Recent studies indicate an important role for HMG-I proteins in regulating gene expression. Moreover, increased expression of the HMG-I, -Y, and -C proteins correlates with cellular proliferation and neoplastic transformation in several cell types and human cancers. Previous work from our laboratory has shown that HMG-I is a direct c-Myc target gene that is involved in Myc-mediated neoplastic transformation. In this report, we show that increased expression of HMG-Y or -C leads to transformation with anchorage-independent cell growth in two experimental cell lines in a manner similar to that of HMG-I or c-M...