A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations (original) (raw)

Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity

BMC Genomics, 2014

Background: The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. Results: Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. Conclusions: This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.

Phages associated with horses provide new insights into the dominance of lateral gene transfer in virulent bacteriophages evolution in natural systems

Tailed bacteriophages (Caudovirales order) are omnipresent on our planet. Their impressive ecological and evolutionary success largely relies on the bacteriophage potential to adapt to great variety of the environmental conditions found in the Biosphere. It is believed that the adaptation of bacteriophages, including short time scale adaptation, is achieved almost exclusively via the (micro)evolution processes. In order to analyze the major mechanisms driving adaptation of phage genomes in a natural habitat we used comparative genomics of G7C-like coliphage isolates obtained during 7 years period from the feces of the horses belonging to a local population. The data suggest that even at this relatively short time scale the impact of various recombination events overwhelms the impact of the accumulation of point mutations. The access to the large pool of the genes of a complex microbial and viral community of the animal gut had major effect on the evolutionary trajectories of these p...

Complete Genome Sequences of Bacillus cereus Group Phages AaronPhadgers, ALPS, Beyonphe, Bubs, KamFam, OmnioDeoPrimus, Phireball, PPIsBest, YungSlug, and Zainny

Microbiology Resource Announcements, 2021

Here, we report genome sequences of 10 Bacillus cereus group-infecting bacteriophages. Each virus was isolated from an environmental sample, contained a double-stranded DNA genome, and belonged to the Myoviridae family. Nine phages exhibit a conserved genome structure, and one phage appears novel in genome structure, sequence, and protein content. ABSTRACT Here, we report genome sequences of 10 Bacillus cereus group-infecting bacteriophages. Each virus was isolated from an environmental sample, contained a double-stranded DNA genome, and belonged to the Myoviridae family. Nine phages exhibit a conserved genome structure, and one phage appears novel in genome structure, sequence, and protein content.

The Genome of Bacteriophage K1F, a T7-Like Phage That Has Acquired the Ability To Replicate on K1 Strains of Escherichia coli

Journal of Bacteriology, 2005

Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene “module” at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.

Bacteriophages presence in nature and their role in the natural selection of bacterial populations

2020

Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interact...

Genome Sequences of Two Bacillus Phages Isolated from Indonesia

Microbiology Resource Announcements

Here, the genome sequences of two soil bacteriophages isolated from a red chili plantation in Indonesia are presented. The genome of vB_BspS_SplendidRed (42,859 bp) is highly similar to Bacillus phage Ray17 from the United States, while vB_BspM_MarvelLand (156,945 bp) is highly similar to Bacillus phage BC01 from South Korea.

The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors

Journal of Virology, 2014

This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to wellcharacterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T‫9؍‬ icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. IMPORTANCE The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.

Genomic characterization of six novel Bacillus pumilus bacteriophages

Virology, 2013

Twenty-eight bacteriophages infecting the local host Bacillus pumilus BL-8 were isolated, purified, and characterized. Nine genomes were sequenced, of which six were annotated and are the first of this host submitted to the public record. The 28 phages were divided into two groups by sequence and morphological similarity, yielding 27 cluster BpA phages and 1 cluster BpB phage, which is a BL-8 prophage. Most of the BpA phages have a host range restricted to distantly related strains, B. pumilus and B. simplex, reflecting the complexities of Bacillus taxonomy. Despite isolation over wide geographic and temporal space, the six cluster BpA phages share most of their 23 functionally annotated protein features and show a high degree of sequence similarity, which is unique among phages of the Bacillus genera. This is the first report of B. pumilus phages since 1981.