Roles of mitochondria in human disease (original) (raw)
Abstract
The chapters throughout this volume illustrate the many contributions of mitochondria to the maintenance of normal cell and tissue function, experienced as the health of the individual. Mitochondria are essential for maintaining aspects of physiology as fundamental as cellular energy balance, the modulation of calcium signalling, in defi ning cellular redox balance, and they house signifi cant biosynthetic pathways. Mitochondrial numbers and volume within cells are regulated and have an impact on their functional roles, while, especially in the CNS (central nervous system), mitochondrial traffi cking is critical to ensure the cellular distribution and strategic localization of mitochondria, presumably driven by local energy demand. Maintenance of a healthy mitochondrial population involves a complex system of quality control, involving degrading misfolded proteins, while damaged mitochondria are renewed by fusion or removed by autophagy. It seems evident that mechanisms that impair any of these processes will impair mitochondrial function and cell signalling pathways, leading to disordered cell function which manifests as disease. As gatekeepers of cell life and cell death, mitochondria regulate both apoptotic and necrotic cell death, and so at its most extreme, disturbances involving these pathways may trigger untimely cell death. Conversely, the lack of appropriate cell death can lead to inappropriate tissue
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (150)
- Nass, M.M.K. and Nass, S. (1963) Intramitochondrial fi bers with DNA characteristics: I. fi xation and electron staining reactions. J. Cell Biol. 19, 593-611
- Wallace, D.C. and Fan, W. (2009) The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev. 23, 1714-1736
- Scarpulla, R.C. (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611-638
- Holt, I.J. (2009) Mitochondrial DNA replication and repair: all a fl ap. Trends Biochem. Sci. 34, 358-365
- Chen, X.J. and Butow, R.A. (2005) The organization and inheritance of the mitochondrial genome. Nat Rev. Genet. 6, 815-825
- Copeland, W.C. (2008) Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59, 131-146
- Wallace, D.C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407
- Spinazzola, A. and Zeviani, M. (2009) Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J. Intern. Med. 265, 174-192
- Yu-Wai-Man, P., Griffi ths, P.G., Hudson, G. and Chinnery, P.F. (2009) Inherited mitochondrial optic neuropathies. J. Med. Genet. 46, 145-158
- McKenzie, M., Liolitsa, D., Akinshina, N., Campanella, M., Sisodiya, S., Hargreaves, I., Nirmalananthan, N., Sweeney, M.G., Abou-Sleiman, P.M., Wood, N.W. et al. (2007) Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J. Biol. Chem. 282, 36845-36852
- Elstner, M., Andreoli, C., Klopstock, T., Meitinger, T. and Prokisch, H. (2009) The mitochondrial proteome database: MitoP2. In Methods in Enzymology (William, S.A. and Anne, N.M., eds), pp. 3-20, Academic Press
- Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K. et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123
- Da Cruz, S., Parone, P.A. and Martinou, J.C. (2005) Building the mitochondrial proteome. Expert. Rev. Proteomics 2, 541-551
- Wallace, D.C., Lott, M.T. and Procaccio, V. (2007) Mitochondrial genes in degenerative diseases, cancer and aging. In Emery and Rimoin's Principles and Practice of Medical Genetics, 5th edition (Rimoin, D.L. and Emery, W., eds), pp. 194-298, Churchill Livingstone Elsevier, Philadelphia, PA
- Mootha, V.K., Bunkenborg, J., Olsen, J.V., Hjerrild, M., Wisniewski, J.R., Stahl, E., Bolouri, M.S., Ray, H.N., Sihag, S., Kamal, M. et al. (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629-640
- Liesa, M., Palacin, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845
- Suen, D.-F., Norris, K.L. and Youle, R.J. (2008) Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590
- Tatsuta, T. and Langer, T. (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306-314
- Ryan, M.T., and Hoogenraad, N.J. (2007) Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76, 701 -722
- Morimoto, R.I. (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427-1438
- Tatsuta, T. (2009) Protein quality control in mitochondria. J. Biochem. 146, 455-461
- Germain, D. (2008) Ubiquitin-dependent and -independent mitochondrial protein quality controls: implications in ageing and neurodegenerative diseases. Mol. Microbiol. 70, 1334-1341
- Bota, D.A. and Davies, K.J.A. (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4, 674-680 Essays in Biochemistry volume 47 2010
- Bota, D.A., Ngo, J.K. and Davies, K.J. A. (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radical Biol. Med. 38, 665-677
- Rugarli, E.I. and Langer, T. (2006) Translating m-AAA protease function in mitochondria to hereditary spastic paraplegia. Trends Mol. Med. 12, 262-269
- Casari, G. and Rugarli, E. (2001) Molecular basis of inherited spastic paraplegias. Curr. Opin. Genet. Dev. 11, 336-342
- Soderblom, C. and Blackstone, C. (2006) Traffi c accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol. Ther. 109, 42-56
- Hansen, J.J., Durr, A., Cournu-Rebeix, I., Georgopoulos, C., Ang, D., Nielsen, M.N., Davoine, C.-S., Brice, A., Fontaine, B., Gregersen, N. and Bross, P. (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328-1332
- Neupert, W. and Herrmann, J.M. (2007) Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723-749
- Orsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V.A., Piccini, D., Martin-Padura, I., Pelliccia, G., Trinei, M., Bono, M. et al. (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J. Biol. Chem. 279, 25689-25695
- Yaguchi, T., Aida, S., Kaul, S.C. and Wadhwa, R. (2007) Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann. N. Y. Acad. Sci. 1100, 306-311
- Fu, Y. and Lee, A.S. (2006) Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol. Ther. 5, 741-744
- Deocaris, C., Kaul, S. and Wadhwa, R. (2008) From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 9, 391-403
- Detmer, S.A. and Chan, D.C. (2007) Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879
- Liu, X., Weaver, D., Shirihai, O. and Hajnoczky, G. (2009) Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fi ssion dynamics. EMBO J. 28, 3074-3089
- Kim, J.-S., Nitta, T., Mohuczy, D., O'Malley, K.A., Moldawer, L.L., Dunn, W.A. and Behrns, K.E. (2008) Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47, 1725-1736
- Twig, G., Hyde, B. and Shirihai, O.S. (2008) Mitochondrial fusion, fi ssion and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092-1097
- Cerveny, K.L., Tamura, Y., Zhang, Z., Jensen, R.E. and Sesaki, H. (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563-569
- Hoppins, S., Lackner, L. and Nunnari, J. (2007) The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751-780
- Legros, F., Lombes, A., Frachon, P. and Rojo, M. (2002) Mitochondrial fusion in human cells is effi cient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343-4354
- Chen, H., McCaffery, J.M. and Chan, D.C. (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548-562
- Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J. et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449-451
- Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12 (Suppl. 2), 1542-1552
- Zhang, Y., Qi, H., Taylor, R., Xu, W., Liu, L.F. and Jin, S. (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-defi cient S. cerevisiae strains. Autophagy 3, 337-346
- Kissova, I., Deffi eu, M., Manon, S. and Camougrand, N. (2004) Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068-39074
- Tal, R., Winter, G., Ecker, N., Klionsky, D.J. and Abeliovich, H. (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for effi cient stationary phase mitophagy and cell survival. J. Biol. Chem. 282, 5617-5624
- Campanella, M., Seraphim, A., Abeti, R., Casswell, E., Echave, P. and Duchen, M.R. (2009) IF1, the endogenous regulator of the F 1 F 0 -ATP synthase, defi nes mitochondrial volume fraction in HeLa cells by regulating autophagy. Biochim. Biophys. Acta 1787, 393-401
- Scherz-Shouval, R. and Elazar, Z. (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17, 422-427
- Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L. and Elazar, Z. (2007) Reactive oxygen species are essential for autophagy and specifi cally regulate the activity of Atg4. EMBO J. 26, 1749-1760
- Karbowski, M., Jeong, S.Y. and Youle, R.J. (2004) Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027-1039
- Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mul, J.J. et al. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9, 1142-1151
- Coppola, D., Khalil, F., Eschrich, S.A., Boulware, D., Yeatman, T. and Wang, H.-G. (2008) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113, 2665-2670
- Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol. 256 (Suppl. 1), 9-17
- Casley, C.S., Land, J.M., Sharpe, M.A., Clark, J.B., Duchen, M.R. and Canevari, L. (2002) β-Amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol. Dis. 10, 258-267
- Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G. and Anandatheerthavarada, H.K. (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057-9068
- Bilsland, L.G., Nirmalananthan, N., Yip, J., Greensmith, L. and Duchen, M.R. (2008) Expression of mutant SOD1 in astrocytes induces functional defi cits in motoneuron mitochondria. J. Neurochem. 107, 1271-1283
- Schapira, A.H.V. (2007) Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. 14, 1261-1266
- Mandemakers, W., Morais, V.A. and De Strooper, B. (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J. Cell Sci. 120, 1707-1716
- Lees, A.J., Hardy, J. and Revesz, T. (2009) Parkinson's disease. Lancet 373, 2055-2066
- Jones, J.M., Datta, P., Srinivasula, S.M., Ji, W., Gupta, S., Zhang, Z., Davies, E., Hajnoczky, G., Saunders, T.L., Van Keuren, M.L. et al. (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721-727
- Martins, L.M., Morrison, A., Klupsch, K., Fedele, V., Moisoi, N., Teismann, P., Abuin, A., Grau, E., Geppert, M., Livi, G.P. et al. (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell Biol. 24, 9848-9862
- Plun-Favreau, H., Klupsch, K., Moisoi, N., Gandhi, S., Kjaer, S., Frith, D., Harvey, K., Deas, E., Harvey, R.J., McDonald, N. et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243-1252
- Pridgeon, J.W., Olzmann, J.A., Chin, L.S. and Li, L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5 e172
- Wood-Kaczmar, A., Gandhi, S., Yao, Z., Abramov, A.Y., Abramov, A.S.Y., Miljan, E.A., Keen, G., Stanyer, L., Hargreaves, I., Klupsch, K. et al. (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 3
- Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., Downward, J., Latchman, D.S., Tabrizi, S.J., Wood, N.W. et al. (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627-638 Essays in Biochemistry volume 47 2010
- Bueler, H. (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp. Neurol. 218, 235-246
- Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly-Y, M., Gidlof, S., Oldfors, A., Wibom, R. et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423
- Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A. et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484
- Miller, R.A. (2005) Evaluating evidence for aging. Science 310, 441-443
- Khrapko, K., Kraytsberg, Y., de Grey, A.D., Vijg, J. and Schon, E.A. (2006) Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5, 279-282
- Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi , P.P., Lanfrancone, L. and Pelicci, P.G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313
- Boerries, M., Most, P., Gledhill, J.R., Walker, J.E., Katus, H.A., Koch, W.J., Aebi, U. and Schoenenberger, C.-A. (2007) Ca 2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol. Cell. Biol. 27, 4365-4373
- Traba, J., Satrustegui, J. and del Arco, A. (2009) Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochem. J. 418, 125-133
- Lasorsa, F.M., Pinton, P., Palmieri, L., Fiermonte, G., Rizzuto, R. and Palmieri, F. (2003) Recombinant expression of the Ca 2+ -sensitive aspartate/glutamate carrier increases mitochondrial ATP produc- tion in agonist-stimulated Chinese hamster ovary cells. J. Biol. Chem. 278, 38686-38692
- Taylor, C.T. and Moncada, S. (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia. Arterioscler. Thromb. Vasc. Biol. 30, 643-647
- Castello, P.R., David, P.S., McClure, T., Crook, Z. and Poyton, R.O. (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell. Metab. 3, 277-287
- Lacza, Z., Pankotai, E., Csordas, A., Gero, D., Kiss, L., Horvath, E.M., Kollai, M., Busija, D.W. and Szabo, C. (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14, 162-168
- Schumacker, P.T. (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175-176
- Crompton, M., Barksby, E., Johnson, N. and Capano, M. (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143-152
- Kroemer, G. and Reed, J.C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513-519
- Bernardi, P. (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127-1155
- Baines, C.P., Kaiser, R.A., Sheiko, T., Craigen, W.J. and Molkentin, J.D. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550-555
- Kokoszka, J.E., Waymire, K.G., Levy, S.E., Sligh, J.E., Cai, J., Jones, D.P., MacGregor, G.R. and Wallace, D.C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461-465
- Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Sayen, M.R., Gottlieb, R.A., Dorn, G.W. et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662
- Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M.A. and Bernardi, P. (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280, 18558-18561
- Forte, M., Gold, B.G., Marracci, G., Chaudhary, P., Basso, E., Johnsen, D., Yu, X., Fowlkes, J., Rahder, M., Stem, K. et al. (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 104, 7558-7563
- Ruck, A., Dolder, M., Wallimann, T. and Brdiczka, D. (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 426, 97 -101
- Crichton, P., Parker, N., Vidal-Puig, A. and Brand, M. (2010) Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Biosci Rep. 30, 187-192
- Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P. and Di Lisa, F. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be moni- tored directly in intact cells by changes in mitochondrial calcein fl uorescence. Biophys. J. 76, 725-734
- Tiepolo, T., Angelin, A., Palma, E., Sabatelli, P., Merlini, L., Nicolosi, L., Finetti, F., Braghetta, P., Vuagniaux, G., Dumont, J.M. et al. (2009) The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1 -/-myopathic mice. Br. J. Pharmacol. 157, 1045-1052
- De Marchi, U., Biasutto, L., Garbisa, S., Toninello, A. and Zoratti, M. (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim. Biophys. Acta 1787, 1425-1432
- Duchen, M.R., McGuinness, O., Brown, L.A. and Crompton, M. (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc. Res. 27, 1790-1794
- Halestrap, A.P. and Pasdois, P. (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta 1787, 1402-1415
- Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Danial, N.N., Moskowitz, M.A. and Korsmeyer, S.J. (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. U.S.A. 102, 12005-12010
- Abramov, A.Y. and Duchen, M.R. (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta 1777, 953-964
- Mukherjee, R., Criddle, D.N., Gukovskaya, A., Gukvoskaya, A., Pandol, S., Petersen, O.H. and Sutton, R. (2008) Mitochondrial injury in pancreatitis. Cell. Calcium 44, 14-23
- Irwin, W.A., Bergamin, N., Sabatelli, P., Reggiani, C., Megighian, A., Merlini, L., Braghetta, P., Columbaro, M., Volpin, D., Bressan, G.M. et al. (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI defi ciency. Nat. Genet. 35, 367-371
- Hicks, D., Lampe, A.K., Laval, S.H., Allamand, V., Jimenez-Mallebrera, C., Walter, M.C., Muntoni, F., Quijano-Roy, S., Richard, P., Straub, V. et al. (2009) Cyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain 132, 147-155
- Bernardi, P., Bonaldo, P., Maraldi, N.M., Merlini, L. and Sabatelli, P. (2009) On the pathogenesis of collagen VI muscular dystrophies: comment on article of Hicks et al. Brain 132, e121
- Palma, E., Tiepolo, T., Angelin, A., Sabatelli, P., Maraldi, N.M., Basso, E., Forte, M.A., Bernardi, P. and Bonaldo, P. (2009) Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum. Mol. Genet. 18, 2024-2031
- Merlini, L., Angelin, A., Tiepolo, T., Braghetta, P., Sabatelli, P., Zamparelli, A., Ferlini, A., Maraldi, N.M., Bonaldo, P. and Bernardi, P. (2008) Cyclosporin A corrects mitochondrial dysfunction and mus- cle apoptosis in patients with collagen VI myopathies. Proc. Natl. Acad. Sci. U.S.A. 105, 5225-5229
- Beltran, B., Mathur, A., Duchen, M.R., Erusalimsky, J.D. and Moncada, S. (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A. 97, 14602-14607
- Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M.R., Abramov, A.Y., Tinker, A. and Duchen, M.R. (2008) Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell. Metab. 8, 13-25
- Duchen, M.R. (2000) Mitochondria and Ca 2+ in cell physiology and pathophysiology. Cell. Calcium 28, 339-348 Essays in Biochemistry volume 47 2010
- Anoopkumar-Dukie, S., Conere, T., Sisk, G.D. and Allshire, A. (2009) Mitochondrial modulation of oxygen-dependent radiosensitivity in some human tumour cell lines. Br. J. Radiol. 82, 847-854
- Grover, G.J. and Malm, J. (2008) Pharmacological profi le of the selective mitochondrial F1F0 ATP hydrolase inhibitor BMS-199264 in myocardial ischemia. Cardiovasc. Ther. 26, 287-296
- Campanella, M., Parker, N., Tan, C.H., Hall, A.M. and Duchen, M.R. (2009) IF(1): setting the pace of the F1Fo-ATP synthase. Trends Biochem. Sci. 34, 343-350
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57-70
- Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033
- Pan, T. and Mawlawi, O. (2008) PET/CT in radiation oncology. Med. Phys. 35, 4955-4966
- Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270
- Jones, R.G. and Thompson, C.B. (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537-548
- Kroemer, G. and Pouyssegur, J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482
- Swietach, P., Vaughan-Jones, R.D. and Harris, A.L. (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 26, 299-310
- Lu, J., Sharma, L.K. and Bai, Y. (2009) Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 19, 802-815
- Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 18, 165-173
- Green, D.R. and Kroemer, G. (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130
- DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. and Thompson, C.B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20
- Ferguson, E.C. and Rathmell, J.C. (2008) New roles for pyruvate kinase M2: working out the Warburg effect. Trends Biochem. Sci. 33, 359-362
- Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Harry, G. et al. (2007) A mitochondria-K + channel axis is sup- pressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51
- Santos, C., Martinez, M., Lima, M., Hao, Y.-J., Simoes, N. and Montiel, R. (2008) Mitochondrial DNA mutations in cancer: a review. Curr. Top. Med. Chem. 8, 1351-1366
- Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y. and Hayashi, J.I. (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661-664
- Tennant, D.A., Duran, R.V., Boulahbel, H. and Gottlieb, E. (2009) Metabolic transformation in cancer. Carcinogenesis 30, 1269-1280
- Brahimi-Horn, M.C. and Pouyssegur, J. (2009) HIF at a glance. J. Cell Sci. 122, 1055-1057
- Funes, J.M., Quintero, M., Henderson, S., Martinez, D., Qureshi, U., Westwood, C., Clements, M.O., Bourboulia, D., Pedley, R.B., Moncada, S. and Boshoff, C. (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc. Natl. Acad. Sci. U.S.A. 104, 6223-6228
- Galluzzi, L., Larochette, N., Zamzami, N. and Kroemer, G. (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812-4830
- Michelakis, E.D., Webster, L. and Mackey, J.R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994
- Chaturvedi, R.K., Adhihetty, P., Shukla, S., Hennessy, T., Calingasan, N., Yang, L., Starkov, A., Kiaei, M., Cannella, M., Sassone, J. et al. (2009) Impaired PGC-1α function in muscle in Huntington's disease. Hum. Mol. Genet. 18, 3048-3065
- Keeney, P.M., Quigley, C.K., Dunham, L.D., Papageorge, C.M., Iyer, S., Thomas, R.R., Schwarz, K.M., Trimmer, P.A., Khan, S.M., Portell, F.R. et al. (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum. Gene Ther. 20, 897-907
- Weydt, P., Pineda, V.V., Torrence, A.E., Libby, R.T., Satterfi eld, T.F., Lazarowski, E.R., Gilbert, M.L., Morton, G.J., Bammler, T.K., Strand, A.D. et al. (2006) Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neuro- degeneration. Cell. Metab. 4, 349-362
- King, A. and Gottlieb, E. (2009) Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr. Opin. Cell Biol. 21, 885-893
- Mizutani, S., Miyato, Y., Shidara, Y., Asoh, S., Tokunaga, A., Tajiri, T. and Ohta, S. (2009) Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs, Cancer Sci. 100, 1680-1687
- Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M.C., Hengartner, M., Abrams, J.M., Tavernarakis, N., Penninger, J., Madeo, F. and Kroemer, G. (2008) No death without life: vital functions of apop- totic effectors. Cell Death Differ. 15, 1113-1123
- Green, D. and Kroemer, G. (1998) The central executioners of apoptosis: caspases or mitochon- dria? Trends Cell Biol. 8, 267-271
- Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2009) Mitochondria as targets for chemotherapy. Apoptosis 14, 624-640
- Szabadkai, G. and Duchen, M.R. (2009) Mitochondria mediated cell death in diabetes. Apoptosis 14, 1405-1423
- Mathis, D., Vence, L. and Benoist, C. (2001) β-Cell death during progression to diabetes. Nature 414, 792-798
- Lee, S.C. and Pervaiz, S. (2007) Apoptosis in the pathophysiology of diabetes mellitus. Int. J. Biochem. Cell Biol. 39, 497-504
- Muoio, D.M. and Newgard, C.B. (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell. Biol. 9, 193-205
- Wiederkehr, A. and Wollheim, C.B. (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell Calcium 44, 64-76
- Maechler, P., Carobbio, S. and Rubi, B. (2006) In β-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int. J. Biochem. Cell Biol. 38, 696-709
- Ohara-Imaizumi, M., Cardozo, A.K., Kikuta, T., Eizirik, D.L. and Nagamatsu, S. (2004) The cytokine interleukin-1β reduces the docking and fusion of insulin granules in pancreatic beta-cells, preferentially decreasing the fi rst phase of exocytosis. J. Biol. Chem. 279, 41271-41274
- Kim, I., Xu, W. and Reed, J.C. (2008) Cell death and endoplasmic reticulum stress: disease rel- evance and therapeutic opportunities. Nat. Rev. Drug Discovery 7, 1013-1030
- Corbett, J.A., Wang, J.L., Sweetland, M.A., Lancaster, J.R. and McDaniel, M.L. (1992) Interleukin 1β induces the formation of nitric oxide by β-cells purifi ed from rodent islets of Langerhans. Evidence for the β-cell as a source and site of action of nitric oxide. J. Clin. Invest. 90, 2384-2391
- Riboulet-Chavey, A., Diraison, F., Siew, L.K., Wong, F.S. and Rutter, G.A. (2008) Inhibition of AMP-activated protein kinase protects pancreatic β-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57, 415-423
- Suarez-Pinzon, W.L., Mabley, J.G., Power, R., Szabo, C. and Rabinovitch, A. (2003) Poly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infi ltrating leukocytes. Diabetes 52, 1683-1688
- Saldeen, J. (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141, 2003-2010
- Nagai, Y., Yonemitsu, S., Erion, D.M., Iwasaki, T., Stark, R., Weismann, D., Dong, J., Zhang, D., Jurczak, M.J., Loffl er, M.G. et al. (2009) The role of peroxisome proliferator-activated recep- tor γ coactivator-1β in the pathogenesis of fructose-induced insulin resistance. Cell. Metab. 9, 252-264
- Poitout, V. and Robertson, R.P. (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351-366
- Newgard, C.B. and McGarry, J.D. (1995) Metabolic coupling factors in pancreatic β-cell signal transduction. Annu. Rev. Biochem. 64, 689-719