Roles of mitochondria in human disease (original) (raw)

Abstract

The chapters throughout this volume illustrate the many contributions of mitochondria to the maintenance of normal cell and tissue function, experienced as the health of the individual. Mitochondria are essential for maintaining aspects of physiology as fundamental as cellular energy balance, the modulation of calcium signalling, in defi ning cellular redox balance, and they house signifi cant biosynthetic pathways. Mitochondrial numbers and volume within cells are regulated and have an impact on their functional roles, while, especially in the CNS (central nervous system), mitochondrial traffi cking is critical to ensure the cellular distribution and strategic localization of mitochondria, presumably driven by local energy demand. Maintenance of a healthy mitochondrial population involves a complex system of quality control, involving degrading misfolded proteins, while damaged mitochondria are renewed by fusion or removed by autophagy. It seems evident that mechanisms that impair any of these processes will impair mitochondrial function and cell signalling pathways, leading to disordered cell function which manifests as disease. As gatekeepers of cell life and cell death, mitochondria regulate both apoptotic and necrotic cell death, and so at its most extreme, disturbances involving these pathways may trigger untimely cell death. Conversely, the lack of appropriate cell death can lead to inappropriate tissue

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (150)

  1. Nass, M.M.K. and Nass, S. (1963) Intramitochondrial fi bers with DNA characteristics: I. fi xation and electron staining reactions. J. Cell Biol. 19, 593-611
  2. Wallace, D.C. and Fan, W. (2009) The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev. 23, 1714-1736
  3. Scarpulla, R.C. (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611-638
  4. Holt, I.J. (2009) Mitochondrial DNA replication and repair: all a fl ap. Trends Biochem. Sci. 34, 358-365
  5. Chen, X.J. and Butow, R.A. (2005) The organization and inheritance of the mitochondrial genome. Nat Rev. Genet. 6, 815-825
  6. Copeland, W.C. (2008) Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59, 131-146
  7. Wallace, D.C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407
  8. Spinazzola, A. and Zeviani, M. (2009) Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J. Intern. Med. 265, 174-192
  9. Yu-Wai-Man, P., Griffi ths, P.G., Hudson, G. and Chinnery, P.F. (2009) Inherited mitochondrial optic neuropathies. J. Med. Genet. 46, 145-158
  10. McKenzie, M., Liolitsa, D., Akinshina, N., Campanella, M., Sisodiya, S., Hargreaves, I., Nirmalananthan, N., Sweeney, M.G., Abou-Sleiman, P.M., Wood, N.W. et al. (2007) Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J. Biol. Chem. 282, 36845-36852
  11. Elstner, M., Andreoli, C., Klopstock, T., Meitinger, T. and Prokisch, H. (2009) The mitochondrial proteome database: MitoP2. In Methods in Enzymology (William, S.A. and Anne, N.M., eds), pp. 3-20, Academic Press
  12. Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K. et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123
  13. Da Cruz, S., Parone, P.A. and Martinou, J.C. (2005) Building the mitochondrial proteome. Expert. Rev. Proteomics 2, 541-551
  14. Wallace, D.C., Lott, M.T. and Procaccio, V. (2007) Mitochondrial genes in degenerative diseases, cancer and aging. In Emery and Rimoin's Principles and Practice of Medical Genetics, 5th edition (Rimoin, D.L. and Emery, W., eds), pp. 194-298, Churchill Livingstone Elsevier, Philadelphia, PA
  15. Mootha, V.K., Bunkenborg, J., Olsen, J.V., Hjerrild, M., Wisniewski, J.R., Stahl, E., Bolouri, M.S., Ray, H.N., Sihag, S., Kamal, M. et al. (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629-640
  16. Liesa, M., Palacin, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845
  17. Suen, D.-F., Norris, K.L. and Youle, R.J. (2008) Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590
  18. Tatsuta, T. and Langer, T. (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306-314
  19. Ryan, M.T., and Hoogenraad, N.J. (2007) Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76, 701 -722
  20. Morimoto, R.I. (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427-1438
  21. Tatsuta, T. (2009) Protein quality control in mitochondria. J. Biochem. 146, 455-461
  22. Germain, D. (2008) Ubiquitin-dependent and -independent mitochondrial protein quality controls: implications in ageing and neurodegenerative diseases. Mol. Microbiol. 70, 1334-1341
  23. Bota, D.A. and Davies, K.J.A. (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4, 674-680 Essays in Biochemistry volume 47 2010
  24. Bota, D.A., Ngo, J.K. and Davies, K.J. A. (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radical Biol. Med. 38, 665-677
  25. Rugarli, E.I. and Langer, T. (2006) Translating m-AAA protease function in mitochondria to hereditary spastic paraplegia. Trends Mol. Med. 12, 262-269
  26. Casari, G. and Rugarli, E. (2001) Molecular basis of inherited spastic paraplegias. Curr. Opin. Genet. Dev. 11, 336-342
  27. Soderblom, C. and Blackstone, C. (2006) Traffi c accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol. Ther. 109, 42-56
  28. Hansen, J.J., Durr, A., Cournu-Rebeix, I., Georgopoulos, C., Ang, D., Nielsen, M.N., Davoine, C.-S., Brice, A., Fontaine, B., Gregersen, N. and Bross, P. (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328-1332
  29. Neupert, W. and Herrmann, J.M. (2007) Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723-749
  30. Orsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V.A., Piccini, D., Martin-Padura, I., Pelliccia, G., Trinei, M., Bono, M. et al. (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J. Biol. Chem. 279, 25689-25695
  31. Yaguchi, T., Aida, S., Kaul, S.C. and Wadhwa, R. (2007) Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann. N. Y. Acad. Sci. 1100, 306-311
  32. Fu, Y. and Lee, A.S. (2006) Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol. Ther. 5, 741-744
  33. Deocaris, C., Kaul, S. and Wadhwa, R. (2008) From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 9, 391-403
  34. Detmer, S.A. and Chan, D.C. (2007) Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879
  35. Liu, X., Weaver, D., Shirihai, O. and Hajnoczky, G. (2009) Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fi ssion dynamics. EMBO J. 28, 3074-3089
  36. Kim, J.-S., Nitta, T., Mohuczy, D., O'Malley, K.A., Moldawer, L.L., Dunn, W.A. and Behrns, K.E. (2008) Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47, 1725-1736
  37. Twig, G., Hyde, B. and Shirihai, O.S. (2008) Mitochondrial fusion, fi ssion and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092-1097
  38. Cerveny, K.L., Tamura, Y., Zhang, Z., Jensen, R.E. and Sesaki, H. (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563-569
  39. Hoppins, S., Lackner, L. and Nunnari, J. (2007) The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751-780
  40. Legros, F., Lombes, A., Frachon, P. and Rojo, M. (2002) Mitochondrial fusion in human cells is effi cient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343-4354
  41. Chen, H., McCaffery, J.M. and Chan, D.C. (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548-562
  42. Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J. et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449-451
  43. Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12 (Suppl. 2), 1542-1552
  44. Zhang, Y., Qi, H., Taylor, R., Xu, W., Liu, L.F. and Jin, S. (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-defi cient S. cerevisiae strains. Autophagy 3, 337-346
  45. Kissova, I., Deffi eu, M., Manon, S. and Camougrand, N. (2004) Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068-39074
  46. Tal, R., Winter, G., Ecker, N., Klionsky, D.J. and Abeliovich, H. (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for effi cient stationary phase mitophagy and cell survival. J. Biol. Chem. 282, 5617-5624
  47. Campanella, M., Seraphim, A., Abeti, R., Casswell, E., Echave, P. and Duchen, M.R. (2009) IF1, the endogenous regulator of the F 1 F 0 -ATP synthase, defi nes mitochondrial volume fraction in HeLa cells by regulating autophagy. Biochim. Biophys. Acta 1787, 393-401
  48. Scherz-Shouval, R. and Elazar, Z. (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17, 422-427
  49. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L. and Elazar, Z. (2007) Reactive oxygen species are essential for autophagy and specifi cally regulate the activity of Atg4. EMBO J. 26, 1749-1760
  50. Karbowski, M., Jeong, S.Y. and Youle, R.J. (2004) Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027-1039
  51. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mul, J.J. et al. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9, 1142-1151
  52. Coppola, D., Khalil, F., Eschrich, S.A., Boulware, D., Yeatman, T. and Wang, H.-G. (2008) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113, 2665-2670
  53. Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol. 256 (Suppl. 1), 9-17
  54. Casley, C.S., Land, J.M., Sharpe, M.A., Clark, J.B., Duchen, M.R. and Canevari, L. (2002) β-Amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol. Dis. 10, 258-267
  55. Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G. and Anandatheerthavarada, H.K. (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057-9068
  56. Bilsland, L.G., Nirmalananthan, N., Yip, J., Greensmith, L. and Duchen, M.R. (2008) Expression of mutant SOD1 in astrocytes induces functional defi cits in motoneuron mitochondria. J. Neurochem. 107, 1271-1283
  57. Schapira, A.H.V. (2007) Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. 14, 1261-1266
  58. Mandemakers, W., Morais, V.A. and De Strooper, B. (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J. Cell Sci. 120, 1707-1716
  59. Lees, A.J., Hardy, J. and Revesz, T. (2009) Parkinson's disease. Lancet 373, 2055-2066
  60. Jones, J.M., Datta, P., Srinivasula, S.M., Ji, W., Gupta, S., Zhang, Z., Davies, E., Hajnoczky, G., Saunders, T.L., Van Keuren, M.L. et al. (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721-727
  61. Martins, L.M., Morrison, A., Klupsch, K., Fedele, V., Moisoi, N., Teismann, P., Abuin, A., Grau, E., Geppert, M., Livi, G.P. et al. (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell Biol. 24, 9848-9862
  62. Plun-Favreau, H., Klupsch, K., Moisoi, N., Gandhi, S., Kjaer, S., Frith, D., Harvey, K., Deas, E., Harvey, R.J., McDonald, N. et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243-1252
  63. Pridgeon, J.W., Olzmann, J.A., Chin, L.S. and Li, L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5 e172
  64. Wood-Kaczmar, A., Gandhi, S., Yao, Z., Abramov, A.Y., Abramov, A.S.Y., Miljan, E.A., Keen, G., Stanyer, L., Hargreaves, I., Klupsch, K. et al. (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 3
  65. Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., Downward, J., Latchman, D.S., Tabrizi, S.J., Wood, N.W. et al. (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627-638 Essays in Biochemistry volume 47 2010
  66. Bueler, H. (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp. Neurol. 218, 235-246
  67. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly-Y, M., Gidlof, S., Oldfors, A., Wibom, R. et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423
  68. Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A. et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484
  69. Miller, R.A. (2005) Evaluating evidence for aging. Science 310, 441-443
  70. Khrapko, K., Kraytsberg, Y., de Grey, A.D., Vijg, J. and Schon, E.A. (2006) Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5, 279-282
  71. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi , P.P., Lanfrancone, L. and Pelicci, P.G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313
  72. Boerries, M., Most, P., Gledhill, J.R., Walker, J.E., Katus, H.A., Koch, W.J., Aebi, U. and Schoenenberger, C.-A. (2007) Ca 2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol. Cell. Biol. 27, 4365-4373
  73. Traba, J., Satrustegui, J. and del Arco, A. (2009) Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochem. J. 418, 125-133
  74. Lasorsa, F.M., Pinton, P., Palmieri, L., Fiermonte, G., Rizzuto, R. and Palmieri, F. (2003) Recombinant expression of the Ca 2+ -sensitive aspartate/glutamate carrier increases mitochondrial ATP produc- tion in agonist-stimulated Chinese hamster ovary cells. J. Biol. Chem. 278, 38686-38692
  75. Taylor, C.T. and Moncada, S. (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia. Arterioscler. Thromb. Vasc. Biol. 30, 643-647
  76. Castello, P.R., David, P.S., McClure, T., Crook, Z. and Poyton, R.O. (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell. Metab. 3, 277-287
  77. Lacza, Z., Pankotai, E., Csordas, A., Gero, D., Kiss, L., Horvath, E.M., Kollai, M., Busija, D.W. and Szabo, C. (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14, 162-168
  78. Schumacker, P.T. (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175-176
  79. Crompton, M., Barksby, E., Johnson, N. and Capano, M. (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143-152
  80. Kroemer, G. and Reed, J.C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513-519
  81. Bernardi, P. (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127-1155
  82. Baines, C.P., Kaiser, R.A., Sheiko, T., Craigen, W.J. and Molkentin, J.D. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550-555
  83. Kokoszka, J.E., Waymire, K.G., Levy, S.E., Sligh, J.E., Cai, J., Jones, D.P., MacGregor, G.R. and Wallace, D.C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461-465
  84. Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Sayen, M.R., Gottlieb, R.A., Dorn, G.W. et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662
  85. Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M.A. and Bernardi, P. (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280, 18558-18561
  86. Forte, M., Gold, B.G., Marracci, G., Chaudhary, P., Basso, E., Johnsen, D., Yu, X., Fowlkes, J., Rahder, M., Stem, K. et al. (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 104, 7558-7563
  87. Ruck, A., Dolder, M., Wallimann, T. and Brdiczka, D. (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 426, 97 -101
  88. Crichton, P., Parker, N., Vidal-Puig, A. and Brand, M. (2010) Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Biosci Rep. 30, 187-192
  89. Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P. and Di Lisa, F. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be moni- tored directly in intact cells by changes in mitochondrial calcein fl uorescence. Biophys. J. 76, 725-734
  90. Tiepolo, T., Angelin, A., Palma, E., Sabatelli, P., Merlini, L., Nicolosi, L., Finetti, F., Braghetta, P., Vuagniaux, G., Dumont, J.M. et al. (2009) The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1 -/-myopathic mice. Br. J. Pharmacol. 157, 1045-1052
  91. De Marchi, U., Biasutto, L., Garbisa, S., Toninello, A. and Zoratti, M. (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim. Biophys. Acta 1787, 1425-1432
  92. Duchen, M.R., McGuinness, O., Brown, L.A. and Crompton, M. (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc. Res. 27, 1790-1794
  93. Halestrap, A.P. and Pasdois, P. (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta 1787, 1402-1415
  94. Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Danial, N.N., Moskowitz, M.A. and Korsmeyer, S.J. (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. U.S.A. 102, 12005-12010
  95. Abramov, A.Y. and Duchen, M.R. (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta 1777, 953-964
  96. Mukherjee, R., Criddle, D.N., Gukovskaya, A., Gukvoskaya, A., Pandol, S., Petersen, O.H. and Sutton, R. (2008) Mitochondrial injury in pancreatitis. Cell. Calcium 44, 14-23
  97. Irwin, W.A., Bergamin, N., Sabatelli, P., Reggiani, C., Megighian, A., Merlini, L., Braghetta, P., Columbaro, M., Volpin, D., Bressan, G.M. et al. (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI defi ciency. Nat. Genet. 35, 367-371
  98. Hicks, D., Lampe, A.K., Laval, S.H., Allamand, V., Jimenez-Mallebrera, C., Walter, M.C., Muntoni, F., Quijano-Roy, S., Richard, P., Straub, V. et al. (2009) Cyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain 132, 147-155
  99. Bernardi, P., Bonaldo, P., Maraldi, N.M., Merlini, L. and Sabatelli, P. (2009) On the pathogenesis of collagen VI muscular dystrophies: comment on article of Hicks et al. Brain 132, e121
  100. Palma, E., Tiepolo, T., Angelin, A., Sabatelli, P., Maraldi, N.M., Basso, E., Forte, M.A., Bernardi, P. and Bonaldo, P. (2009) Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum. Mol. Genet. 18, 2024-2031
  101. Merlini, L., Angelin, A., Tiepolo, T., Braghetta, P., Sabatelli, P., Zamparelli, A., Ferlini, A., Maraldi, N.M., Bonaldo, P. and Bernardi, P. (2008) Cyclosporin A corrects mitochondrial dysfunction and mus- cle apoptosis in patients with collagen VI myopathies. Proc. Natl. Acad. Sci. U.S.A. 105, 5225-5229
  102. Beltran, B., Mathur, A., Duchen, M.R., Erusalimsky, J.D. and Moncada, S. (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A. 97, 14602-14607
  103. Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M.R., Abramov, A.Y., Tinker, A. and Duchen, M.R. (2008) Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell. Metab. 8, 13-25
  104. Duchen, M.R. (2000) Mitochondria and Ca 2+ in cell physiology and pathophysiology. Cell. Calcium 28, 339-348 Essays in Biochemistry volume 47 2010
  105. Anoopkumar-Dukie, S., Conere, T., Sisk, G.D. and Allshire, A. (2009) Mitochondrial modulation of oxygen-dependent radiosensitivity in some human tumour cell lines. Br. J. Radiol. 82, 847-854
  106. Grover, G.J. and Malm, J. (2008) Pharmacological profi le of the selective mitochondrial F1F0 ATP hydrolase inhibitor BMS-199264 in myocardial ischemia. Cardiovasc. Ther. 26, 287-296
  107. Campanella, M., Parker, N., Tan, C.H., Hall, A.M. and Duchen, M.R. (2009) IF(1): setting the pace of the F1Fo-ATP synthase. Trends Biochem. Sci. 34, 343-350
  108. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57-70
  109. Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033
  110. Pan, T. and Mawlawi, O. (2008) PET/CT in radiation oncology. Med. Phys. 35, 4955-4966
  111. Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270
  112. Jones, R.G. and Thompson, C.B. (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537-548
  113. Kroemer, G. and Pouyssegur, J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482
  114. Swietach, P., Vaughan-Jones, R.D. and Harris, A.L. (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 26, 299-310
  115. Lu, J., Sharma, L.K. and Bai, Y. (2009) Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 19, 802-815
  116. Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 18, 165-173
  117. Green, D.R. and Kroemer, G. (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130
  118. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. and Thompson, C.B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20
  119. Ferguson, E.C. and Rathmell, J.C. (2008) New roles for pyruvate kinase M2: working out the Warburg effect. Trends Biochem. Sci. 33, 359-362
  120. Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Harry, G. et al. (2007) A mitochondria-K + channel axis is sup- pressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51
  121. Santos, C., Martinez, M., Lima, M., Hao, Y.-J., Simoes, N. and Montiel, R. (2008) Mitochondrial DNA mutations in cancer: a review. Curr. Top. Med. Chem. 8, 1351-1366
  122. Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y. and Hayashi, J.I. (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661-664
  123. Tennant, D.A., Duran, R.V., Boulahbel, H. and Gottlieb, E. (2009) Metabolic transformation in cancer. Carcinogenesis 30, 1269-1280
  124. Brahimi-Horn, M.C. and Pouyssegur, J. (2009) HIF at a glance. J. Cell Sci. 122, 1055-1057
  125. Funes, J.M., Quintero, M., Henderson, S., Martinez, D., Qureshi, U., Westwood, C., Clements, M.O., Bourboulia, D., Pedley, R.B., Moncada, S. and Boshoff, C. (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc. Natl. Acad. Sci. U.S.A. 104, 6223-6228
  126. Galluzzi, L., Larochette, N., Zamzami, N. and Kroemer, G. (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812-4830
  127. Michelakis, E.D., Webster, L. and Mackey, J.R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994
  128. Chaturvedi, R.K., Adhihetty, P., Shukla, S., Hennessy, T., Calingasan, N., Yang, L., Starkov, A., Kiaei, M., Cannella, M., Sassone, J. et al. (2009) Impaired PGC-1α function in muscle in Huntington's disease. Hum. Mol. Genet. 18, 3048-3065
  129. Keeney, P.M., Quigley, C.K., Dunham, L.D., Papageorge, C.M., Iyer, S., Thomas, R.R., Schwarz, K.M., Trimmer, P.A., Khan, S.M., Portell, F.R. et al. (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum. Gene Ther. 20, 897-907
  130. Weydt, P., Pineda, V.V., Torrence, A.E., Libby, R.T., Satterfi eld, T.F., Lazarowski, E.R., Gilbert, M.L., Morton, G.J., Bammler, T.K., Strand, A.D. et al. (2006) Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neuro- degeneration. Cell. Metab. 4, 349-362
  131. King, A. and Gottlieb, E. (2009) Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr. Opin. Cell Biol. 21, 885-893
  132. Mizutani, S., Miyato, Y., Shidara, Y., Asoh, S., Tokunaga, A., Tajiri, T. and Ohta, S. (2009) Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs, Cancer Sci. 100, 1680-1687
  133. Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M.C., Hengartner, M., Abrams, J.M., Tavernarakis, N., Penninger, J., Madeo, F. and Kroemer, G. (2008) No death without life: vital functions of apop- totic effectors. Cell Death Differ. 15, 1113-1123
  134. Green, D. and Kroemer, G. (1998) The central executioners of apoptosis: caspases or mitochon- dria? Trends Cell Biol. 8, 267-271
  135. Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2009) Mitochondria as targets for chemotherapy. Apoptosis 14, 624-640
  136. Szabadkai, G. and Duchen, M.R. (2009) Mitochondria mediated cell death in diabetes. Apoptosis 14, 1405-1423
  137. Mathis, D., Vence, L. and Benoist, C. (2001) β-Cell death during progression to diabetes. Nature 414, 792-798
  138. Lee, S.C. and Pervaiz, S. (2007) Apoptosis in the pathophysiology of diabetes mellitus. Int. J. Biochem. Cell Biol. 39, 497-504
  139. Muoio, D.M. and Newgard, C.B. (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell. Biol. 9, 193-205
  140. Wiederkehr, A. and Wollheim, C.B. (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell Calcium 44, 64-76
  141. Maechler, P., Carobbio, S. and Rubi, B. (2006) In β-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int. J. Biochem. Cell Biol. 38, 696-709
  142. Ohara-Imaizumi, M., Cardozo, A.K., Kikuta, T., Eizirik, D.L. and Nagamatsu, S. (2004) The cytokine interleukin-1β reduces the docking and fusion of insulin granules in pancreatic beta-cells, preferentially decreasing the fi rst phase of exocytosis. J. Biol. Chem. 279, 41271-41274
  143. Kim, I., Xu, W. and Reed, J.C. (2008) Cell death and endoplasmic reticulum stress: disease rel- evance and therapeutic opportunities. Nat. Rev. Drug Discovery 7, 1013-1030
  144. Corbett, J.A., Wang, J.L., Sweetland, M.A., Lancaster, J.R. and McDaniel, M.L. (1992) Interleukin 1β induces the formation of nitric oxide by β-cells purifi ed from rodent islets of Langerhans. Evidence for the β-cell as a source and site of action of nitric oxide. J. Clin. Invest. 90, 2384-2391
  145. Riboulet-Chavey, A., Diraison, F., Siew, L.K., Wong, F.S. and Rutter, G.A. (2008) Inhibition of AMP-activated protein kinase protects pancreatic β-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57, 415-423
  146. Suarez-Pinzon, W.L., Mabley, J.G., Power, R., Szabo, C. and Rabinovitch, A. (2003) Poly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infi ltrating leukocytes. Diabetes 52, 1683-1688
  147. Saldeen, J. (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141, 2003-2010
  148. Nagai, Y., Yonemitsu, S., Erion, D.M., Iwasaki, T., Stark, R., Weismann, D., Dong, J., Zhang, D., Jurczak, M.J., Loffl er, M.G. et al. (2009) The role of peroxisome proliferator-activated recep- tor γ coactivator-1β in the pathogenesis of fructose-induced insulin resistance. Cell. Metab. 9, 252-264
  149. Poitout, V. and Robertson, R.P. (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351-366
  150. Newgard, C.B. and McGarry, J.D. (1995) Metabolic coupling factors in pancreatic β-cell signal transduction. Annu. Rev. Biochem. 64, 689-719