Micronutrient supplement intakes among collegiate and masters athletes: A cross-sectional study (original) (raw)

2023, Frontiers in sports and active living

In our cross-sectional study, we evaluated micronutrient supplementation intake among Collegiate and Masters Athletes. Methods: We conducted a cross-sectional study to assess micronutrient supplementation consumption in Collegiate and Masters Athletes, comparing sex and sport classification within each respective group. Micronutrient supplement consumption data were measured using a Food Frequency Questionnaire. A two-way analysis of variance was used to explore the differences among Collegiate and Masters Athletes' supplement intakes of the following vitamins and minerals: vitamins A, B 6 , B 12 , C, E, D, and calcium, folate, iron, magnesium niacin, riboflavin, selenium, thiamine, and zinc. When significant differences were found, a Bonferroni post hoc test was performed to identify specific group differences. The significance level was set a priori at p < 0.05. Results: A total of 198 athletes (105 females and 93 males) were included in the study. Participants were 36.16 ± 12.33 years of age. Collegiate male athletes had significantly greater vitamin A [1,090.51 ± 154.72 vs. 473.93 ± 233.18 mg retinol activity equivalents (RAE)/day] (p < 0.036), folate [337.14 ± 44.79 vs. 148.67 ± 67.50 mcg dietary folate equivalents (DFE)/day] (p < 0.027), and magnesium (65.35 ± 8.28 vs. 31.28 ± 12.48 mg/day) (p < 0.031) intakes compared to Collegiate female athletes. Collegiate CrossFit Athletes (940.71 ± 157.54 mg/day) had a significantly greater vitamin C intake compared to Collegiate General Athletes (156.34 ± 67.79 mg/day) (p < 0.005), Collegiate Triathletes (88.57 ± 148.53 mg/day) (p < 0.027), Collegiate Resistance Training Athletes (74.28 ± 143.81 mg/day) (p < 0.020), and Collegiate Powerlifters (175.71 ± 128.63 mg/day) (p < 0.044). Masters females had significantly greater calcium intakes compared to Masters males (494.09 ± 65.73 vs.187.89 ± 77.23 mg/day, respectively) (p < 0.002). Collegiate Runners (41.35 ± 6.53 mg/day) had a significantly greater iron intake compared to Collegiate Powerlifters (4.50 ± 6.53 mg/day) (p < 0.024). Masters Swimmers (61.43 ± 12.10 mg/day) had significantly greater iron intakes compared to Masters General Athletes (13.97 ± 3.56 mg/day) (p < 0.014), Masters Runners (17.74 ± 2.32 mg/day) (p < 0.03), Masters Triathletes (11.95 ± 3.73 mg/ day) (p < 0.008), Masters CrossFit Athletes (15.93 ± 5.36 mg/day) (p < 0.043), Masters Rowers (9.10 ± 3.36 mg/day) (p < 0.003), and Masters Cyclists (1.71 ± 9.88 mg/day) (p < 0.011). Masters Powerlifters (47.14 ± 9.65 mg/day) had significantly greater zinc intakes compared to Masters General Athletes (9.57 ± 2.84 mg/day) (p < 0.015), Masters Runners (10.67 ± 1.85 mg/day) (p < 0.017), Masters Triathletes (10.24 ± 2.98 mg/day) (p < 0.020), Masters Rowers (9.33 ± 2.68 mg/day) (p < 0.013), and Masters Cyclists (1.43 ± 7.88 mg/day) (p < 0.019). There were no other significant differences among the other micronutrient supplement intakes between the sexes or among the sport classification.