One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure (original) (raw)
Related papers
Micromechanical modelling of coupled crystal plasticity and hydrogen diffusion
Philosophical Magazine, 2018
Hydrogen transport behaviour in metals is greatly influenced by the mechanical stress and the underlying microstructural features. In this work, a micromechanical model based on coupled crystal plasticity and hydrogen diffusion is developed and applied to model hydrogen diffusion and storage in a polycrystalline microstructure. Particular emphasis is laid on mechanical influences on hydrogen transport, invoked by internal stresses and by trapping of dislocations generated by plastic strains. First, a study of a precharged material is carried out where hydrogen is allowed to redistribute under the influence of mechanical loading. These simulations demonstrate to which extent hydrogen migrates from regions with compressive strains to those with tensile strains. In the next step, the influence of plastic prestraining on hydrogen diffusion is analysed. This prestraining produces internal residual stresses in the microstructure, that mimic residual stresses introduced into components during cold working. Lastly, a series of permeation simulations is performed to characterise the influence of hydrogen trapping on effective diffusivity. It is shown that the effective diffusivity decreases with stronger traps and the effect is more prominent at a larger predeformation, because the trapped hydrogen concentration increases considerably. The reduction of effective diffusivity with plastic deformation agrees very well with experimental findings and offers a way to validate and parameterise our model. With this work, it is demonstrated how micromechanical modelling can support the understanding of hydrogen transport on the microstructural level.
Strain gradient plasticity modeling of hydrogen diffusion to the crack tip
International Journal of Hydrogen Energy, 2016
In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental measurements of crack tip deformation and high levels of lattice hydrogen concentration are predicted within microns to the crack tip. The important implications of the results in the understanding of hydrogen embrittlement mechanisms are thoroughly discussed.
Computational modelling of hydrogen assisted fracture in polycrystalline materials
International Journal of Hydrogen Energy, 2022
We present a combined phase field and cohesive zone formulation for hydrogen embrittlement that resolves the polycrystalline microstructure of metals. Unlike previous studies, our deformation-diffusion-fracture modelling framework accounts for hydrogen-microstructure interactions and explicitly captures the interplay between bulk (transgranular) fracture and intergranular fracture, with the latter being facilitated by hydrogen through mechanisms such as grain boundary decohesion. We demonstrate the potential of the theoretical and computational formulation presented by simulating inter- and trans-granular cracking in relevant case studies. Firstly, verification calculations are conducted to show how the framework predicts the expected qualitative trends. Secondly, the model is used to simulate recent experiments on pure Ni and a Ni–Cu superalloy that have attracted particular interest. We show that the model is able to provide a good quantitative agreement with testing data and yields a mechanistic rationale for the experimental observations.
Computational Materials Science, 2013
Predicting resistance to environmental degradation, especially hydrogen embrittlement (HE) has become a major concern for life assessment and risk analysis of structural materials. The microstructure of the materials plays a significant role in HE. Despite the large documentation about the subject, the contribution of hydrogen diffusion on this process stays unclear. In this work, we analyze the effects of the microstructure on hydrogen diffusion, especially the influence of grain boundaries considered as high diffusivity paths and possible sites of damage occurrence. Electrochemical permeation was simulated using finite elements method (FEM). Scale effects between the RVE (Representative Volume Element) and the size of the membrane are discussed. Domains of applicability for standard homogenization methods, especially Hashin-Shtrikman model are studied using results from microstructural based FEM. Domains of invariance of diffusion behavior and concentration profiles for grain shapes and the size of the membrane are also analyzed. Thus, the difficulty to extract diffusion properties by permeation test for heterogeneous microstructures is highlighted and discussed.
Modeling Dislocation-Mediated Hydrogen Transport and Trapping in Face-Centered Cubic Metals
Journal of Engineering Materials and Technology, 2021
The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we use a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hy...
International Journal of Hydrogen Energy, 2017
This study aims at comparing the hydrogen transport in polycrystals and in equivalent homogeneous material, with 3D FE simulations accounting for stress-assisted diffusion and trapping due to plastic strain, in order to examine the hydrogen concentration fields consistency in multi-scale simulations. The effective diffusion features are compared for various sizes of iron polycrystals. For trapping free diffusion, it is shown that hydrogen concentration fields are consistent between scales. When trapping is accounted for, effective diffusion in polycrystals and in homogeneous materials are different, underlying the importance of the trap density function formulation at different scales.
Modification of Plastic Strain Localization Induced by Hydrogen Absorption
Advances in Materials Sciences, 2008
In order to highlight hydrogen effects on the plasticity, the slip morphology after straining (under tension up to 4% of plastic strain in ambient air) of hydrogenated (at 135 wt.ppm) and non-hydrogenated 316L stainless steel polycrystals was compared. A statistical analysis of both slip band spacings (SBS) and slip band heights (SBH) was performed using atomic force microscopy. Tensile tests were performed at low strain rate, specimens being previously charged at controlled hydrogen concentration. The plastic strain field heterogeneity in polycrystals was taken into account thanks to numerical simulation of crystalline plasticity. On each grain, the calculated plastic shear was correlated with the distribution of SBS and the average number of emerging dislocations per slip band. In comparison with uncharged specimen and for an equivalent cumulated plastic strain, the hydrogenated specimen shows an increase of the slip band spacing (SBS) and of emerging dislocations. This result confirms a plastic localization induced by absorbed hydrogen.
Computational description of nanocrystalline deformation based on crystal plasticity
Acta Materialia, 2004
The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasiisotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 lm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stressstrain evolution.
Coupled macroscale-microscale model for hydrogen embrittlement in polycrystalline materials
International Journal of Hydrogen Energy
Prediction of hydrogen embrittlement within a component requires the influence of several length scales to be accounted for. The loads that affect the rate of hydrogen diffusion, typically thermal and structural, derive from the macro or component scale. Micro-structural analysis has an important role to play in providing accurate estimates of the typically homogenous material characteristics employed at the component scale. This contribution considers the coupling of a micro-scale model with the component scale. A micro-scale model is employed in critical regions of the component where resolution of the heterogeneous behavior is necessary. A tie boundary/cut boundary technique is introduced to couple the micro-scale model to the macro-scale model. The developed technique offers a computationally efficient procedure to analyze the multi-scale inter-granular hydrogen embrittlement in a polycrystalline material. This work is targeted at the prediction of hydrogen embrittlement in pulseplated nickel and is carried out within the context of the EU FP7 MultiHy project.