The mass function of galaxies based on correlated velocity structure (original) (raw)

Abstract

Summary This paper introduces a new approach to the calculation of the galactic mass multiplicity function based on the probability of correlated velocity structures existing on a given spatial scale. The correlations are supposed to have developed during a protogalactic era of virialized structures, before which time the density evolution had already become non-linear. We determine the density index empirically in this paper, although it may eventually be related to a spectrum of initial fluctuations. The subsequent non-linear dynamics are dealt with explicitly using a continuum model with tidal interactions simulated by an effective shear viscosity. Our predictions for the (unnormalized) mass function and for the large-scale velocity correlations between galaxies are deduced relatively directly from the ‘cosmic von Karman-Howarth’ equation implicit in our basic model. Our predictions are in good agreement with existing data. The first part of our paper offers a summary and a criti...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (31)

  1. Appel, L. A. & Jones, B. J. T., 1989. Preprint.
  2. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S., 1986. Astrophys. J., 304,15 (BBKS).
  3. Binney, J. & Tremaine, S., 1987. Galactic Dynamics, Princeton Uni- versity Press, Princeton.
  4. Bouchet, F. R. & Pellat, R., 1984. Astr. Astrophys., 141, 77.
  5. Bouchet, F. R., Adam, J.-C. & Pellat, R., 1985. Astr. Astrophys., 144,413.
  6. Efstathiou, G., Frenk, C. S., White, S. D. M. & Davis, M., 1988. Mon. Not. R. astr. Soc, 235, 715.
  7. Evrard, A. E., 1989. Astrophys. J., 341, 26. Gorski, K., 1988. Astrophys. J., 332, L7.
  8. Gorski, K., Davis, M., Strauss, M. A., White, S. D. M. & Yahil, A., 1990. Astrophys. J., submitted.
  9. Groth, E. J., Juszkiewicz, R. & Ostriker, J. P., 1990. Astrophys. J., submitted.
  10. Henriksen, R. N., 1986. Astrophys. J., 310,189.
  11. Henriksen, R. N., 1988. Astrophys. J., 331, 359.
  12. Henriksen, R. N., 1989. Mon. Not. R. astr. Soc, 240, 917.
  13. Henriksen, R. N. & Turner, B. E., 1984. Astrophys. J., 287, 200.
  14. Kaiser, N., 1989. In: Large Scale Structure and Motions in the Universe, p. 197, eds Mezzetti, M., Giuricin, G., Mardirossion, F. & Ramella, M., Kluwer, Dordrecht.
  15. Landau, L. D. & Lifshitz, E. M, 1987. Fluid Mechanics, 2nd edn, Chap, xv, Pergamon Press, Oxford.
  16. Lattanzio, J. & Henriksen, R. N., 1988. Mon. Not. R. astr. Soc, 232, 565. The mass function of galaxies 267
  17. Lucchin, F., 1990. Xlth Cracow School of Cosmology, Cracow, 22-31 August 1988.
  18. Lucchin, F. & Matarrese, S., 1988. Astrophys. J., 330, 535.
  19. Lynden-Bell, D. & Lemos, J. P. S., 1988. Mon. Not. R. astr. Soc, 233,197.
  20. Lynden-Bell, D., Faber, S., Burstein, D., Davies, R., Dressier, A., Terlevich, R. & Wagner, G., 1988. Astrophys. J., 326,19.
  21. Occhionero, F. & Scaramella, R., 1988. Astr. Astrophys., 204, 3.
  22. Peacock, J. A. & Heavens, A. F., 1990. Mon. Not. R. astr. Soc, 243, 133. Peebles, P. J. E., 1980. The Large Scale Structure of the Universe, Princeton University Press.
  23. Press, W. H. & Schechter, P., 1974. Astrophys. J., 332, 89 (PS).
  24. Rubin, U. C, Ford, W. K., Thonnard, R, Roberts, M. S. & Graham, J.A., 1976a. v4srr.Z, 81,687.
  25. Rubin, U. C, Thonnard, N., Ford, W. K. & Roberts, M. S. (1976b). Astr. J., SI, 719.
  26. Schaeffer, R. & Silk, J., 1985. Astrophys. J., 292, 319.
  27. Schaeffer, R. & Silk, J., 1988. Astr. Astrophys., 203,273.
  28. Schechter, P., 1976. Astrophys. J., 203, 297.
  29. Sedov, L. J., 1982. Similarity and Dimensional methods in Mech- anics, MIR, Moscow.
  30. Silk, J., 1985. Fundamental Interactions and Cosmology, p. 405, eds Audouze, J. & Tran Thanh Van, J., Editions Frontieres, Gif-sur- Yvette, France.
  31. Weinberg, S., 1972. Gravitation and Cosmology, John Wiley, New York.