Dynamic void distribution in myoglobin and five mutants (original) (raw)
Related papers
Proceedings of the …, 2000
We determined the structure of the photolytic intermediate of a sperm whale myoglobin (Mb) mutant called Mb-YQR [Leu-(B10)3 Tyr; His(E7)3 Gln; Thr(E10)3 Arg] to 1.4-Å resolution by ultra-low temperature (20 K) x-ray diffraction. Starting with the CO complex, illumination leads to photolysis of the Fe-CO bond, and migration of the photolyzed carbon monoxide (CO*) to a niche in the protein 8.1 Å from the heme iron; this cavity corresponds to that hosting an atom of Xe when the crystal is equilibrated with xenon gas at 7 atmospheres [Tilton, R. F., Jr., Kuntz, I. D. & Petsko, G. A. (1984) Biochemistry 23, 2849 -2857]. The site occupied by CO* corresponds to that predicted by molecular dynamics simulations previously carried out to account for the NO geminate rebinding of Mb-YQR observed in laser photolysis experiments at room temperature. This secondary docking site differs from the primary docking site identified by previous crystallographic studies on the photolyzed intermediate of wild-type sperm whale Mb performed at cryogenic temperatures [Teng et al. (1994) Nat. Struct. Biol. 1, 701-705] and room temperature [Š rajer et al. (1996) Science 274, 1726 -1729]. Our experiment shows that the pathway of a small molecule in its trajectory through a protein may be modified by site-directed mutagenesis, and that migration within the protein matrix to the active site involves a limited number of pre-existing cavities identified in the interior space of the protein.
Biophysical Journal, 2005
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and the presence of the photolyzed CO in the proximity of the passage; here we show that in wild-type deoxy myoglobin, opening is almost random. In wild-type deoxy myoglobin, the passage between the distal pocket and the solvent is strictly correlated to the presence/absence of a water molecule that simultaneously interacts with the distal histidine side chain and the heme iron; conversely, in the photodissociated myoglobin, the connection with the bulk solvent is always open when CO is in the vicinity of the A pyrrole ring. In YQR deoxy myoglobin, the mutated Gln(E7)64 is stably H-bonded with the mutated Tyr(B10)29. The essential dynamics analysis unveils a different behavior for the three systems. The motion amplitude is progressively restricted in going from wild-type to YQR deoxy myoglobin and to wild-type myoglobin photoproduct. In all cases, the principal motions involve mainly the same regions, but their directions are different. Analysis of the dynamics of the preexisting cavities indicates large fluctuations and frequent connections with the solvent, in agreement with the earlier hypothesis that some of the ligand may escape from the protein through these pathways.
Heme Proteins: The Role of Solvent on the Dynamics of Gates and Portals Revealed by MD Simulations
Biophysical Journal, 2010
Internal cavities, which are central to the biological functions of myoglobin, are exploited by gaseous ligands (e.g., O 2 , NO, CO, etc.) to migrate inside the protein matrix. At present, it is not clear whether the ligand makes its own way inside the protein or instead the internal cavities are an intrinsic feature of myoglobin. To address this issue, standard molecular dynamics simulations were performed on horse-heart met-myoglobin with no ligand migrating inside the protein matrix. To reveal intrinsic internal pathways, the use of a statistical approach was applied to the cavity calculation, with special emphasis on the major pathway from the distal pocket to Xe1. Our study points out the remarkable dynamical behavior of Xe4, whose "breathing motions" may facilitate migration of ligands through the distal region. Additionally, our results highlight a two-way path for a ligand to diffuse through the proximal region, possibly allowing an alternative route in case Xe1 is occupied. Finally, our approach has led us to the identification of key residues, such as leucines, that may work as switches between cavities.
Biochimica et Biophysica Acta (BBA) - General Subjects, 2005
Molecular dynamics simulations of the unliganded T state of human hemoglobin showed the existence of a spontaneous, very wide cavity on the distal side of the a subunit. This cavity consists of three tunnels spreading from the vicinity of the iron atom (the ligand binding site) to the surface of the subunit, constituting possible passageways for the entrance of the ligand. A fourth passageway was characterized due to the trajectory of water molecules entering or leaving the heme pocket. Analogous passages were observed in the h subunits. They all appear and disappear dynamically, although some parts of them are more persistent along the trajectories. The most persistent regions within these tunnels correspond to all the xenon docking sites of human cytoglobin and to some of those of sperm whale and horse heart myoglobins and group I truncated hemoglobins. D
Computing cavities, channels, pores and pockets in proteins from non-spherical ligands models
Bioinformatics, 2014
Identifying protein cavities, channels and pockets accessible to ligands is a major step to predict potential protein-ligands complexes. It is also essential for preparation of protein-ligand docking experiments in the context of enzymatic activity mechanism and structure-based drug design. We introduce a new method, implemented in a program named CCCPP, which computes the void parts of the proteins, i.e. cavities, channels and pockets. The present approach is a variant of the alpha shapes method, with the advantage of taking into account the size and the shape of the ligand. We show that the widely used spherical model of ligands is most of the time inadequate and that cylindrical shapes are more realistic. The analysis of the void parts of the protein is done via a network of channels depending on the ligand. The performance of CCCPP is tested with known substrates of cytochromes P450 (CYP) 1A2 and 3A4 involved in xenobiotics metabolism. The test results indicate that CCCPP is able to find pathways to the buried heminic P450 active site even for high molecular weight CYP 3A4 substrates such as two ketoconazoles together, an experimentally observed situation. Free binaries are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html michel.petitjean@univ-paris-diderot.fr.
Structural factors controlling ligand binding to myoglobin: A kinetic hole-burning study
Proceedings of the National Academy of Sciences, 1998
Using temperature-derivative spectroscopy in the temperature range below 100 K, we have studied the dependence of the Soret band on the recombination barrier in sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation at 12 K. The spectra were separated into contributions from the photodissociated species, Mb*CO, and CObound myoglobin. The line shapes of the Soret bands of both photolyzed and liganded myoglobin were analyzed with a model that takes into account the homogeneous bandwidth, coupling of the electronic transition to vibrational modes, and static conformational heterogeneity. The analysis yields correlations between the activation enthalpy for rebinding and the model parameters that characterize the homogeneous subensembles within the conformationally heterogeneous ensemble. Such couplings between spectral and functional parameters arise when they both originate from a common structural coordinate. This effect is frequently denoted as ''kinetic hole burning.'' The study of these correlations gives direct insights into the structure-function relationship in proteins. On the basis of earlier work that assigned spectral parameters to geometric properties of the heme, the connections with the heme geometry are discussed. We show that two separate structural coordinates inf luence the Soret line shape, but only one of the two is coupled to the enthalpy barrier for rebinding. We give evidence that this coordinate, contrary to widespread belief, is not the iron displacement from the mean heme plane.
Coupling of Protein Relaxation to Ligand Binding and Migration in Myoglobin
Biophysical Journal, 2004
Protein relaxation, ligand binding, and ligand migration into a hydrophobic cavity in myoglobin are unified by a bounded diffusion model which produces an accurate fit to complex ligand rebinding data over eight decades in time and a 160 K temperature range, in qualitative agreement with time-resolved x-ray crystallography. Protein relaxation operates in a cyclic manner to move the ligand away from the binding site.
The discovery in the last two decades of novel members of the globin superfamily has challenged the conventional view about the structure and function of globins. Thus, peculiar structural differences are expected to have direct influence on properties related to ligand migration, binding affinity and heme reactivity. Molecular simulations are a valuable tool to gain insigth into the molecular mechanisms that underlie those structural differences, and their relationship with the diversity of functional roles. In this work, the impact of molecular simulations in exploring the linkage between structure, dynamics and function is highlighted for three representative cases: the migration of ligands through the protein matrix of truncated hemoglobins, the modulation of binding affinity by heme distortion in protoglobin, and finally the functional implications due to the equilibrium between penta- and hexacoordination of the heme with distal histidine in neuroglobin.
Biophysical Journal, 2008
By using multiple molecular dynamics trajectories of photolyzed carbon monoxide (CO) within crystallized myoglobin, a quantitative description of CO diffusion and corresponding kinetics was obtained. Molecular dynamics results allowed us to construct a detailed kinetic model of the migration process, shedding light on the kinetic mechanism and relevant steps of CO migration and remarkably-well reproducing the available experimental data as provided by time-resolved Laue x-ray diffraction.