Genome-level responses to the environment: plant desiccation tolerance (original) (raw)
Related papers
Angiosperm Plant Desiccation Tolerance: Hints from Transcriptomics and Genome Sequencing
Trends in Plant Science, 2017
Desiccation tolerance (DT) in angiosperms is present in the small group of resurrection plants and in seeds. DT requires the presence of protective proteins, specific carbohydrates, restructuring of membrane lipids, and regulatory mechanisms directing a dedicated gene expression program. Many components are common to resurrection plants and seeds; however, some are specific for resurrection plants. Understanding how each component contributes to DT is challenging. Recent transcriptome analyses and genome sequencing indicate that increased expression [ 4 4 2 _ T D $ D I F F ] is essential of genes encoding protective components[ 4 4 3 _ T D $ D I F F ] , recently evolved, species-specific genes and non-protein-coding RNAs[ 4 4 4 _ T D $ D I F F ]. Modification and reshuffling of existing cis-regulatory promoter elements seems to play a role in the rewiring of regulatory networks required for increased expression of DT-related genes in resurrection species.
Unravelling the molecular cues of plant adaptation or survival to water deficit
ressources.ciheam.org
To cite th is article / Pou r citer cet article ravellin g th e molecu lar cu es of plan t adaptation or su rvival to water deficit. In : Santini A. (ed.), Lamaddalena N. (ed.), Severino G. (ed.), Palladino M. (ed.). Irrigation in Mediterranean agriculture: challenges and innovation for the next dec ades . Bari : CIHEAM, 2008. p. 85-91 (Options Méditerranéennes : Série A. Séminaires
A footprint of desiccation tolerance in the genome of Xerophyta viscosa
Nature plants, 2017
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These 'resurrection species' may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic 'clusters of desiccation-associated genes' (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X....
Convergent evolution of desiccation tolerance in grasses
bioRxiv (Cold Spring Harbor Laboratory), 2023
Desiccation tolerance has evolved repeatedly in plants as an adaptation to survive extreme environments. Plants use similar biophysical and cellular mechanisms to survive life without water, but convergence at the molecular, gene, and regulatory levels remains to be tested. Here, we explore the evolutionary mechanisms underlying the recurrent evolution of desiccation tolerance across grasses. We observed substantial overlap in gene duplication and expression associated with desiccation, and syntenic genes of shared origin are activated across species, indicative of parallel evolution. In other cases, similar metabolic pathways are induced, but using different gene sets, pointing towards phenotypic convergence. Species-specific mechanisms supplement these shared core mechanisms, underlining the complexity and diversity of evolutionary adaptations. Our findings provide insight into the evolutionary processes driving desiccation tolerance and highlight the roles of parallel mutation and complementary pathway adaptation in response to environmental challenges.
Plant Signaling & Behavior, 2015
Crop vulnerability to multiple abiotic stresses is increasing at an alarming rate in the current global climate change scenario, especially drought. Crop improvement for adaptive adjustments to accomplish stress tolerance requires a comprehensive understanding of the key contributory processes. This requires the identification and careful analysis of the critical morpho-physiological plant attributes and their genetic control. In this review we try to discuss the crucial traits underlying drought tolerance and the various modes followed to understand their molecular level regulation. Plant stress biology is progressing into new dimensions and a conscious attempt has been made to traverse through the various approaches and checkpoints that would be relevant to tackle drought stress limitations for sustainable crop production.
F1000 - Post-publication peer review of the biomedical literature
Interdisciplinary syntheses are needed to scale up discovery of the environmental drivers and molecular basis of adaptation in nature. Here we integrated novel approaches using whole genome sequences, satellite remote sensing, and transgenic experiments to study natural loss-of-function alleles associated with drought histories in wild Arabidopsis thaliana. The genes we identified exhibit population genetic signatures of parallel molecular evolution, selection for loss-offunction, and shared associations with flowering time phenotypes in directions consistent with longstanding adaptive hypotheses seven times more often than expected by chance. We then confirmed predicted phenotypes experimentally in transgenic knockout lines. These findings reveal the importance of drought timing to explain the evolution of alternative drought tolerance strategies and further challenge popular assumptions about the adaptive value of genetic loss-offunction in nature. These results also motivate improved species-wide sequencing efforts to better identify loss-of-function variants and inspire new opportunities for engineering climate resilience in crops.
Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern " OMICS " analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches
Gene, 2007
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.
An evolutionary perspective of plant adaptations to dry environments
2020
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, drought became one of the major problems they encountered, as it impacts correct cell functioning necessary to support life. The evolution of morphophysiological and molecular adaptations to cope with and tolerate drough was undeniably useful to survive on land. Some of these adaptations appeared repeatedly in phylogenetically distant species, showing a signature of convergent evolution. Details of this convergent evolution are now being assessed thanks to recent developments on high throughput phenotyping and whole genome and transcriptome sequencing. Phylogenomic (comparative genomic) and comparative transcriptomic analyses are revealing complex, well-coordinated and intricate gain and loss of genes and co-option of gene regulatory networks underlying cell and tissue specific adaptations to moderate and extreme drought in phylogenetically distant species. Here we review recent research on signatures of convergent evolution of regulatory networks underlying carbon concentrating mechanisms such as C4 and CAM photosynthesis, desiccation tolerance in seeds and resurrection plants, and impermeabilization of root exodermis.