Budgeted Prize-Collecting Traveling Salesman and Minimum Spanning Tree Problems (original) (raw)
We consider constrained versions of the prize-collecting traveling salesman and the prize-collecting minimum spanning tree problems. The goal is to maximize the number of vertices in the returned tour/tree subject to a bound on the tour/tree cost. Rooted variants of the problems have the additional constraint that a given vertex, the root, must be contained in the tour/tree. We present a 2-approximation algorithm for the rooted and unrooted versions of both the tree and tour variants. The algorithm is based on a parameterized primal–dual approach. It relies on first finding a threshold value for the dual variable corresponding to the budget constraint in the primal and then carefully constructing a tour/tree that is, in a precise sense, just within budget. We improve upon the best-known guarantee of 2 + ε for the rooted and unrooted tour versions and 3 + ε for the rooted and unrooted tree versions. Our analysis extends to the setting with weighted vertices, in which we want to maxim...