Empirical model for predicting concentrations of refractory hydrophobic organic compounds in digested sludge from municipal wastewater treatment plants (original) (raw)
Related papers
Integrated Environmental Assessment and Management, 2012
This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids.
Scientific Data
Section 405(d) of the Clean Water Act requires the US Environmental Protection Agency to review sewage sludge regulations every two years to identify any additional pollutants that may occur in biosolids and to set regulations for pollutants identified in biosolids if sufficient scientific evidence shows they may harm human health or the environment. To date, EPA has conducted eight biennial reviews to identify chemical and microbial pollutants and three national sewage sludge surveys to identify pollutants and obtain concentration data for chemicals found in biosolids. Prior to 2021, there was inconsistent reporting of chemicals identified and EPA did not cumulatively track chemicals in biosolids. Through the efforts presented here, EPA produced a list of 726 chemicals and structure-based classes found in biosolids based on biennial reviews and national sewage sludge surveys. Summary statistics of concentration data are also reported for the 484 chemicals found in the three nationa...
2005
The fate and the mass balance of persistent organic pollutants (POPs) during the conventional activated sludge treatment process were investigated in the wastewater treatment plant of the city of Thessaloniki, northern Greece. The POPs of interest were 7 polychlorinated biphenyls and 19 organochlorine pesticides. Target compounds were determined at six different points across the treatment system: the influent, the effluent of the primary sedimentation tank, the effluent of the secondary sedimentation tank, the primary sludge, the activated sludge from the recirculation stream, and the digested/dewatered sludge. The distribution of POPs between the dissolved and the adsorbed phases of wastewater and sludge was investigated. A good linear relationship between the distribution coefficients, K d , and the octanol-water partition coefficients, K ow , of the solutes was observed only in raw wastewater, suggesting that other factors affect the phase distribution of organic compounds in treated wastewater. For all POPs, a significant increase in partitioning with a decreasing solids concentration was observed, revealing an effect from non-settling microparticles remaining in the ''dissolved'' phase during the separation procedure. A good linear relationship was also revealed between log K d and the dissolved organic carbon (DOC) content of wastewater, suggesting that DOC favors the advective transport of POPs in the dissolved phase. Almost all POPs showed good mass balance agreements at both the primary and the secondary treatment. The losses observed for some species could be attributed to biodegradation/biotransformation rather than volatilization. The relative distribution between the treated effluent and the waste sludge streams varied largely among different compounds, with p-p 0-DDE being highly accumulated in the waste sludge (98%) but almost 60% of a-HCH remaining in the treated effluent.
Environmental Science & Technology, 2017
Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.
Organic contaminants of emerging concern in land-applied sewage sludge (biosolids)
J Residuals Sci …, 2004
Modern wastewater treatment greatly ameliorates the release to the aquatic environment of pollutants present in industrial and residential discharges. However, the recycling of sewage sludge (also known as "biosolids") as a soil amendment presents additional challenges to the wastewater industry, as they must now also assure these complex materials do not adversely effect the environment. Concerns not only include contaminants historically tracked (e.g. heavy metals, petroleum products, PCBs and pesticides), but also those newly discovered in discharges. We recently detected four classes of emerging contaminants (polybrominated diphenyl ethers, alkylphenols and their associated ethoxylates, polycyclic musks, and triclosan) in 12 biosolid samples collected from around the U.S. These findings support the 2002 National Academy of Science conclusion that contaminants of potential toxicological concern, not previously investigated during development of the EPA Part 503-risk assessment, are present in modern biosolids and that a new National Sewage Sludge Survey and updated risk assessment need to be conducted.
Analytical and Bioanalytical Chemistry, 2007
Modern sanitary practices result in large volumes of human waste, as well as domestic and industrial sewage, being collected and treated at common collection points, wastewater treatment plants (WWTPs). In recognition of the growing use of sewage sludge as fertilizers and as soil amendments, and the scarcity of current data regarding the chemical constituents in sewage sludge, the United States National Research Council (NRC) in 2002 produced a report on sewage sludge. Among the NRC's recommendations was the need for investigating the occurrence of pharmaceuticals and personal care products (PPCPs) in sewage sludge. PPCPs are a diverse array of non-regulated contaminants that had not been studied in previous sewage sludge surveys but which are likely to be present. The focus of this paper will be to review the current analytical methodologies available for investigating whether pharmaceuticals are present in WWTPproduced sewage sludge, to summarize current regulatory practices regarding sewage sludge, and to report on the presence of pharmaceuticals in sewage sludge.
Temporal trends of persistent organic pollutants in digested sewage sludge (1993–2012)
Environment International, 2013
The analysis of temporal trends is a key tool to assess the success of national and international regulations on chemical pollution. Persistent organic pollutants (POPs) are chemical pollutants, which are not only harmful, but also because of their slow environmental degradation they pose a long-time risk. In this study, concentrations of selected POPs were measured between 1993 and 2012 in digested sewage sludge from eight municipal waste water treatment plants. Polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-dioxins and furans (PCDD/Fs), which have been banned or restricted for decades, exhibited decreasing trends with apparent half-lives between 9 and 12 years. Polybrominated diphenyl ethers (PBDEs) and long-chain perfluorinated acids showed no clear trend, which reflects the recent introduction of regulations. The analysis of octabromodiphenyl ethers did not reveal indications for reductive debromination of decabromodiphenyl ether; however the analysis of total bromine showed that up to 14% of the total bromine load in sewage sludge originated from PBDEs (average 2%). This is the first study to report temporal trends for more than 20 years of series POPs in sewage sludge.