Electrochemical tools to disclose the electrochemical reduction mechanism of CO2 in aprotic solvents and ionic liquids (original) (raw)

2021, Journal of Electroanalytical Chemistry

Carbon dioxide (CO2) plays a key role in controlling the temperature of the Earth. But the increase in the concentration of CO2 in the atmosphere brings with it a series of consequences, originating several environmental problems. The use of electrochemical, spectroscopic and molecular dynamics techniques are useful toolkits to valorize carbon dioxide, and to know the reduction mechanism as a function of CO2 concentration, the cathode nature, and the electrolyte. This manuscript will be mainly centered in the use of ionic liquids (IL) for efficient CO2 capture and valorization into different valuable products thanks to the CO2 electrochemical reduction. In this sense, spectroelectrochemistry based on cyclic voltammetry coupled with Polarization Modulation-Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and Infrared Reflection-Absorption Spectroscopy (IRRAS) appear to be an efficient instrument to follow the CO2 reactivity in imidazolium ionic liquids. Finally, we present molecular dynamics paired with cyclic voltammetry in order to calculate the diffusion coefficient of CO2 and the number of electrons involved in its reduction process, respectively. Therefore, the current research opens the door to the use of theoreticalexperimental approaches altogether to determine how is the CO2 reduction mechanism. The CO2 reduction products in function of the solvent and nature of the cathode is suggested, proving that the product obtained from the electrochemical reduction of CO2 depends on the electrode material and the solvent.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact