Early overnutrition reduces Pdx1 expression and induces β cell failure in Swiss Webster mice (original) (raw)
Related papers
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Maternal low-protein diet (LP) throughout gestation affects pancreatic β-cell fraction of the offspring at birth, thus increasing their susceptibility to metabolic dysfunction and type 2 diabetes in adulthood. The present study sought to strictly examine the effects of LP during the last week of gestation (LP12.5) alone as a developmental window for β-cell programming and metabolic dysfunction in adulthood. Islet morphology analysis revealed normal β-cell fraction in LP12.5 newborns. Normal glucose tolerance was observed in 6- to 8-wk-old male and female LP12.5 offspring. However, male LP12.5 offspring displayed glucose intolerance and reduced insulin sensitivity associated with β-cell dysfunction with aging. High-fat diet exposure of metabolically normal 12-wk-old male LP12.5 induced glucose intolerance due to increased body weight, insulin resistance, and insufficient β-cell mass adaptation despite higher insulin secretion. Assessment of epigenetic mechanisms through microRNAs (mi...
AJP: Endocrinology and Metabolism, 2014
Intrauterine environment may influence the health of postnatal offspring. There have been many studies on the effects of maternal high-fat diet (HFD) on diabetes and glucose metabolism in offspring. Here, we investigated the effects in male and female offspring. C57/BL6J mice were bred and fed either control diet (CD) or HFD from conception to weaning, and offspring were fed CD or HFD from 6 to 20 wk. At 20 wk, maternal HFD induced glucose intolerance and insulin resistance in offspring. Additionally, liver triacylglycerol content, adipose tissue mass, and inflammation increased in maternal HFD. In contrast, extending previous observations, insulin secretion at glucose tolerance test, islet area, insulin content, and PDX-1 mRNA levels in isolated islets were lower in maternal HFD in males, whereas they were higher in females. Oxidative stress in islets increased in maternal HFD in males, whereas there were no differences in females. Plasma estradiol levels were lower in males than i...
Neonatal overnutrition in mice exacerbates high-fat diet-induced metabolic perturbations
Journal of Endocrinology, 2013
Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO–HFD) mice. In a...