A Precision Measurement of the Neutrino Mixing Angle Theta (Sub 13) Using Reactor Antineutrinos at Daya Bay (original) (raw)

A Precision Measurement of the Neutrino Mixing Angle theta_13 using Reactor Antineutrinos at Daya Bay

2007

A reactor-neutrino experiment, Daya Bay, has been proposed to determine the least-known neutrino mixing angle theta_13 using electron antineutrinos produced at the Daya Bay nuclear power complex in China. Daya Bay is an international collaboration with institutions from China, the United States, the Czech Republic, Hong Kong, Russia, and Taiwan. The experiment will use eight identical detectors deployed at three

New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

Physical review letters, 2015

We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analy...

The detector system of the Daya Bay reactor neutrino experiment

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery ofν e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 2 2θ 13 and the effective mass splitting ∆m 2 ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

Improved measurement of electron antineutrino disappearance at Daya Bay

Chinese Physics C, 2013

With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin 2 2θ 13 = 0.089 ± 0.010(stat) ± 0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW th commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944 ± 0.007(stat) ± 0.003(syst) was measured by three detectors at a flux-weighted average distance of 1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5 ± 0.3% (far detectors) and 2 ± 0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ 13 .

Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

Chinese Physics C, 2017

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992 ± 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.

Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

Physical review letters, 2016

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GW_{th} nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10^{-18} cm^{2} GW^{-1} day^{-1} or (5.92±0.14) ×10^{-43} cm^{2} fission^{-1}. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is ex...

Independent measurement of the neutrino mixing angle θ 13 via neutron capture on hydrogen at Daya Bay

Physical Review D, 2014

A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of θ13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GW th reactors, the rate deficit observed at the far hall is interpreted as sin 2 2θ13 =0.083 ± 0.018 in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin 2 2θ13=0.089 ± 0.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

The Detector System of The Daya Bay Reactor Antineutrino Experiment

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery ofν e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 2 2θ 13 and the effective mass splitting ∆m 2 ee . The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.