Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China (original) (raw)

Comprehensive analysis of relationship between vegetation attributes and soil erosion on hillslopes in the Loess Plateau of China

Environmental Earth Sciences, 2014

In soil and water conservation research, vegetation is considered to be a primary factor affecting soil erosion. Many studies focus on the relationship between soil erosion and a given attribute of vegetation. Few studies have attempted a comprehensive analysis of vegetation attributes. Thus, the aim of this study is to explain the relationship between vegetation and soil erosion in detail. We studied 104 vegetation plots and 104 soil samples in the Yangjuangou catchment, Loess Plateau, Shaanxi Province, China. According to a correlation analysis of the vegetation attributes and soil 137 Cs inventories, vegetation cover exerts a positive effect on soil erosion. In addition, vegetation aggregation increases with increasing soil loss. During this period of study, plant diversity can have different relationships with soil erosion according to the vegetation pattern. When vegetation distribution is relatively homogeneous, plant cover decreases with increasing diversity, and the soil loss increases. When vegetation pattern distributes between homogeneous and heterogeneous, the relationship between vegetation diversity and soil erosion is not obvious. When vegetation distribution is in a heterogeneous pattern, cover increases with increasing diversity, and soil loss decreases.

Effects of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China

Land Degradation & Development, 2004

This study examines the effects of land use and slope angle on runoff, soil loss and nitrogen loss from hillslopes of the Loess Plateau in China. Farmland, wasteland and four forest treatments (sea buckthorn þ poplar, immature sea buckthorn, mature sea buckthorn, and immature Chinese pine) were the types of land use that were compared. The results showed that July was the critical period for runoff, soil loss and nitrogen loss from farmland. Farmland was the most susceptible land use. Sea buckthorn þ poplar, immature sea buckthorn, and mature sea buckthorn limited the runoff, soil loss and nitrogen loss. Farmland on slopes over 15 degrees should be abandoned because of the high erosion rate and nitrogen loss.

Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China

Plant and Soil, 2019

Aims Since the 1970s, extensive croplands were converted to forest and pasture lands to control severe soil erosion on the Loess Plateau of China. We quantify the direct and indirect effects of vegetation restoration on runoff and sediment yield on hillslopes in the field to improve environmental governance. Methods An artificial rainfall experiment at a rainfall intensity of 120 mm h −1 and a slope gradient of 22°were used to distinguish the effects of vegetation restoration on runoff and sediment yield. Results Compared to the farmland slopes, vegetation restoration directly prolonged the time-to-runoff by 140%, reduced the runoff rate by 20%, and increased the soil infiltration capacity by 15%. Vegetation restoration indirectly delayed the time-to-runoff by 120%, reduced the runoff rate and sediment yield rate by 50% and 94%, respectively, and increased the soil infiltration capacity by 58% on the hillslopes with vegetation restoration. Conclusions The direct effects of vegetation restoration on runoff and sediment yield were lower than its indirect impacts. Vegetation cover, decreases in soil bulk density, and increases in belowground root biomasses and > 0.25 mm aggregate stability were the primary causes of runoff and sediment yield reduction on the slopes with vegetation restoration.

Effects of land use on slope runoff and soil loss in the Loess Plateau of China: A meta-analysis

Science of The Total Environment, 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Traffic and tillage effects on runoff and soil loss on the Loess Plateau of northern China

Soil Research, 2008

This paper reports the outcome of 5 years of field plot runoff monitoring, 2 years of water erosion measurement, and a rainfall simulation experiment on moderately sloping farmland on the loess plateau of north-west China. The objective was to test different conservation tillage systems compared with the control treatment, conventional mouldboard plough practice (CK). Tillage, residue cover, and compaction effects were assessed in terms of runoff and soil erosion. Results from the runoff plots showed that conservation tillage, with more residue cover, less compaction, and less soil disturbance, could substantially reduce runoff and soil erosion compared with the control. No tillage with residue cover and no compaction produced the least runoff and soil erosion. Compared with the control, it reduced runoff and soil erosion by about 40% and 80%, respectively. At the start of the experiment, residue cover appeared to be the most important factor affecting soil and water conservation, p...

Remote sensing estimation of the soil erosion cover‐management factor for China's Loess Plateau

Land Degradation & Development, 2020

The cover‐management factor (C‐factor) is used in the revised universal soil loss equation to represent the effect of vegetation cover and its management practices on hillslope erosion. Remote sensing has been widely used to estimate vegetation cover and the C‐factor, but most previous studies only used the photosynthetic vegetation (PV) or green vegetation indices (VI, e.g., normalized difference VI) for estimating the C‐factor and the important non‐PV (NPV) component was often ignored. In this study, we developed a new technique to estimate monthly time‐series C‐factor using the fractional vegetation cover (FVC) including both PV and NPV, and weighted by monthly rainfall erosivity ratio. The monthly FVC was derived from the moderate resolution imaging spectroradiometer and LANDSAT data with field validation. We conducted the case‐study over China's Loess Plateau and analysed the spatiotemporal variations of FVC and the C‐factor and their impacts on erosion over the Plateau. Ou...

Quantifying the Effect of Ecological Restoration on Soil Erosion in China’s Loess Plateau Region: An Application of the MMF Approach

Environmental Management, 2010

Land degradation due to erosion is one of the most serious environmental problems in China. To reduce land degradation, the government has taken a number of conservation and restoration measures, including the Sloping Land Conversion Program (SLCP), which was launched in 1999. A logical question is whether these measures have reduced soil erosion at the regional level. The objective of this article is to answer this question by assessing soil erosion dynamics in the Zuli River basin in the Loess Plateau of China from 1999 to 2006. The MMF (Morgan, Morgan and Finney) model was used to simulate changes in runoff and soil erosion over the period of time during which ecological restoration projects were implemented. Some model variables were derived from remotely sensed images to provide improved land surface representation. With an overall accuracy rate of 0.67, our simulations show that increased ground vegetation cover, especially in forestlands and grasslands, has reduced soil erosion by 38.8% on average from 1999 to 2006. During the same time period, however, the change in rainfall pattern has caused a 13.1% ± 4.3% increase in soil erosion, resulting in a net 25.7% ± 8.5% reduction in soil erosion. This suggests that China's various ecological restoration efforts have been effective in reducing soil loss.

Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China

Journal of Arid Land, 2013

As an important parameter in the soil erosion model, soil surface roughness (SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage (ZT), shallow hoeing (SH) and contour ploughing (CP). Two rainfall intensities were applied, and three stages of water erosion processes (splash erosion (I), sheet erosion (II) and rill erosion (III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT<SH<CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function (R 2 >0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller (P<0.05) in the SH and CP treatments than in the ZT treatment.

Soil erosion simulations of land use scenarios for a small Loess Plateau catchment

CATENA, 2003

Several land use scenarios were developed for the 3.5 km 2 Danangou catchment on the Chinese Loess Plateau. These scenarios consist of four groups of three scenarios each: one group is based on the present land use distribution, the other three (alternative land uses) on a redistribution of land use according to slope gradient, soil type, slope aspect and land form. For example, cropland areas are restricted to slope gradients smaller than 25%, 20% and 15%. All groups consist of one scenario that only uses present or alternative land use and two scenarios that apply simple forms of biological conservation practices (mulching, improved fallow) and mechanical conservation practices (contour ridges). The LISEM soil erosion model was used to simulate the effects of these different scenarios on erosion. To do this, a calibrated Lisem-data set for a real storm was used. The results show that the predicted erosion rates for woodland/shrubland are much lower than those for other land uses. According to the simulations, runoff and erosion decrease by about 10% if conservation measures are applied to the present land use, while the predicted decrease for the alternative land uses is much larger at between 40% and 60%. This large decrease can be explained by the fact that one of the main differences in the alternative land uses is that they have much more woodland/shrubland. Differences in predicted erosion rates between the different alternative land uses are caused by conversion of cropland to orchard/cash tree. The present study is one of the first attempts to use soil erosion modelling as a tool for optimising land use and management strategies to reduce runoff and erosion