Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings (original) (raw)

Influence of Spray Angle on Microstructure and Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

Journal of Thermal Spray Technology

Thermal barrier coatings (TBCs) are widely utilized in gas turbine engines for power generation. In recent years, the application of TBCs in automotive has been introduced to improve engine efficiency. Low thermal conductivity and high durability are desired coating properties for both gas turbine engines and automotive. Also, suspension plasma spraying (SPS) permits a columnar microstructure that combines both properties. However, it can be challenging to deposit a uniform columnar microstructure on a complex geometry, such as a gas turbine component or piston head, and achieve similar coating characteristics on all surfaces. This work's objective was to investigate the influence of spray angle on the microstructure and lifetime of TBCs produced by SPS. For this purpose, SPS TBCs were deposited on specimens using different spray angles. The microstructures of the coatings were analyzed by image analysis for thickness, porosity, and column density. Thermal and optical properties...

Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

Coatings, 2015

Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF)-sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC) systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

Article Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

2015

Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF)-sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC) systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties

Journal of Thermal Spray Technology, 2011

The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 lm and 80 nm. The powder-ethanol suspensions made with 15-lm diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th ) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200°C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.

Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings — Thermal and lifetime performance

Surface and Coatings Technology, 2014

Suspension plasma spraying has become a very promising candidate for the production of strain tolerant coatings for the gas turbine industry. Under certain process conditions suspension plasma spraying (SPS) generates column-like structures in the produced coatings. While a mechanism for column formation has been suggested previously based on columns forming on surface asperities, the effect of modification of surface structures on SPS coating properties has not been investigated. In this study, the surface topography of bond coats within a TBC system were modified by the combination of polishing and surface grit blasting. Yttria stabilized zirconia coatings were deposited using an axial feed suspension plasma spray gun. The surface topography of the resultant coatings was characterized using striped light projection. Samples were tested for thermo-cyclic fatigue lifetime at 1100°C during 1 hour cycles. Thermal shock performance was evaluated using the burner rig test and thermal conductivity evaluated using the laser flash analysis. The results indicate that columnar SPS coating microstructure is strongly influenced by surface topography. Test results suggest that control of surface topography may be an important factor to improve the performance of SPS coatings.

Experimental Study of the Microstructure and Properties of Surface Coatings Formed by Plasma Spraying

2009

Thermal spraying is a generic term to describe a collection of coating processes involving material transport at high speeds and elevated temperature. Particles or droplets (of coating materials) are accelerated at high speeds, heated and are made to impact an object (i.e. the substrate). Successive particles thus reach a surface where the high energy causes the particles to deform and form a mechanical bond with the underlying surface. These particles vary depending upon the process, but can cover a range of 1 to 200 microns [1]. Plasma powder spraying method allows a large number of technological parameters to be varied. From previous research, it shows that a number of phase transformation occur takes place with the use of different parameters [2]. During secondary heating, the properties of the coating changes in microstructure and hardness. Therefore the aim of this project is to investigate the microstructure and properties of surface coating under different heating conditions...

Microstructural Changes in Suspension Plasma-Sprayed TBCs Deposited on Complex Geometry Substrates

Coatings

Thermal barrier coatings (TBCs) are considered a promising solution for improving the efficiency of internal combustion engines. Among the thermal spray processes, the relatively newly developed suspension plasma spray (SPS) is an attractive candidate due to its unique microstructural features that have already demonstrated increased performance in gas turbine applications. To achieve these features, thermal spray conditions play an essential role. In specific uses, such as piston of diesel engines, parameters as spray angle and spray distance pose challenges to keep them constant during the whole spray process due to the complex geometry of the piston. To understand the effect of the spray distance and spray angle, a comprehensive investigation of the produced thermal spray microstructure on the piston geometry was conducted. Flat and complex geometry surfaces were coated using the same plasma parameters while the spray angle and distance were changed. Characterization was performe...

Influence of Substrate Shape and Roughness on Coating Microstructure in Suspension Plasma Spray

Coatings, 2019

This study investigated the influence of the substrate shape and roughness on the microstructure of suspension plasma spray (SPS) coatings. For this purpose, an yttria-stabilized zirconia (YSZ) suspension was sprayed on flat and curved stainless-steel substrates by SPS. The suspension was composed of 20 wt.% YSZ particles in ethanol. After spraying, the morphology of the coatings was characterized by scanning electron microscopy (SEM). The results showed that the substrate shape influences the amount of coating material deposited and microstructural features of the coating. The amount of coating material deposited was seen to decrease as the radius of curvature decreased. Finally, the roughness was found to influence the formation of columnar structure.

Deposition mechanisms of thermal barrier coatings in the solution precursor plasma spray process

Surface & Coatings Technology, 2004

In an effort to understand the deposition mechanisms in the solution precursor plasma spray (SPPS)-a promising method for the deposition of highly-durable thermal barrier coatings-some model spray experiments were performed. In the SPPS process, an aqueous chemical precursor feedstock, which results in a ZrO -7wt.%Y O ceramic solid solution coating, is injected into the 2 2 3 plasma jet and the coating is deposited on a metal substrate. The model experiments performed here entailed holding the plasma torch stationary. The deposits collected in these experiments were then characterized to identify the deposition mechanisms. In addition, actual coatings deposited by multiple-pass scanning plasma-torch experiments were also characterized to verify the identified deposition mechanisms. Striking resemblances were found between the morphologies of the microstructural features in the actual coating and in the deposits from the model experiments. Melting and solidification, resulting in ultra-fine 'splats', were identified for the first time in the SPPS process. ᮊ

Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings

Materials Science and Engineering: A, 1999

In recent years it has been observed that the substrate surface temperature during thermal spray deposition has a profound effect on the morphology of the impacted droplet (splat) and consequently on the microstructure and properties of the deposits. In this set of two papers (one for metal and one for ceramic), the substrate temperature effects have been studied in an integrated manner relating the initial splat formation to microstructure development and eventually to the properties of the deposit. Isolated impacted splats have been obtained on polished steel substrates at two different temperatures (high and low) and these have been analyzed quantitatively for their shape factors and thicknesses. The deposits have been formed nominally at these two different temperatures and their microstructures and properties have been analyzed. The results confirm that there exists a threshold transition temperature for the substrate surface beyond which the splat morphology changes from a fragmented (splashed) to a more contiguous (disk-shaped) morphology. In the case of zirconia this temperature appears to be in the range of about 250 -300°C, which is roughly 10% of the melting temperature of zirconia. It has been further observed that the splat-substrate and inter-splat contact is significantly improved at higher temperatures, leading to reduced porosity, increased thermal conductivity and strength. These results are assimilated to develop an integrated structure -property relationship and preliminary arguments are presented as to the reason for such transitions.