Enhanced Epithelial-to-Mesenchymal Transition Associated with Lysosome Dysfunction in Podocytes: Role of p62/Sequestosome 1 as a Signaling Hub (original) (raw)

Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice

Journal of Clinical Investigation, 2010

Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podocyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers damaged proteins and organelles to lysosomes in order to maintain cellular homeostasis. Here we report that podocytes exhibit an unusually high level of constitutive autophagy. Podocyte-specific deletion of autophagyrelated 5 (Atg5) led to a glomerulopathy in aging mice that was accompanied by an accumulation of oxidized and ubiquitinated proteins, ER stress, and proteinuria. These changes resulted ultimately in podocyte loss and late-onset glomerulosclerosis. Analysis of pathophysiological conditions indicated that autophagy was substantially increased in glomeruli from mice with induced proteinuria and in glomeruli from patients with acquired proteinuric diseases. Further, mice lacking Atg5 in podocytes exhibited strongly increased susceptibility to models of glomerular disease. These findings highlight the importance of induced autophagy as a key homeostatic mechanism to maintain podocyte integrity. We postulate that constitutive and induced autophagy is a major protective mechanism against podocyte aging and glomerular injury, representing a putative target to ameliorate human glomerular disease and aging-related loss of renal function.

Podocyte Autophagy in Homeostasis and Disease

2021

Autophagy is a protective mechanism that removes dysfunctional components and provides nutrition for cells. Podocytes are terminally differentiated specialized epithelial cells that wrap around the capillaries of the glomerular filtration barrier and show high autophagy level at the baseline. Here, we provide an overview of cellular autophagy and its regulation in homeostasis with specific reference to podocytes. We discuss recent data that have focused on the functional role and regulation of autophagy during podocyte injury in experimental and clinical glomerular diseases. A thorough understanding of podocyte autophagy could shed novel insights into podocyte survival mechanisms with injury and offer potential targets for novel therapeutics for glomerular disease.

How Is Proteinuric Diabetic Nephropathy Caused by Disturbed Proteostasis and Autophagy in Podocytes

Progression of diabetic nephropathy (DN) is commonly defined by an increase in albuminuria from normoalbuminuria to microalbuminuria and from microalbuminuria to macroalbuminuria. Although many therapeutic interventions, including reducing hyperglycemia and intraglomerular pressure, have been shown to slow down the progression of DN, many patients still develop end-stage renal disease. A major difficulty in inducing remission in patients with early DN is the identification of biomarkers that could help to identify patients more likely to progress to endstage renal disease. Traditional risk factors, such as albuminuria, do not effectively predict DN progression, and other predictors of DN have yet to be characterized and validated. The need for discovering sensitive and robust biomarkers to monitor the decline in renal function and to separate progressors from nonprogressors of DN is therefore of paramount importance.

Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy

The Journal of biological chemistry, 2015

It has been suggested that autophagy protects renal tubular epithelial cells (TECs) from injury in diabetic nephropathy (DN). However, the manner in which the autophagy-lysosome pathway is changed in this state remains unclear. In this study of DN, we investigated the autophagic activity and lysosomal alterations in vivo and in vitro. We found that autophagic vacuoles and SQSTM1-positive proteins accumulated in TECs from patients with DN and in human renal tubular epithelial cell line (HK-2 cells) treated with advanced glycation end products (AGEs), the important factors that involved in the pathogenesis of DN. In HK-2 cells, exposure to AGEs caused a significant increase in autophagosomes but a marked decrease in autolysosomes. And the lysosomal turnover of LC3-II was not observed although LC3-II puncta were co-localized with the irregular LAMP1 granules after AGEs treatment. Furthermore, lysosomal membrane permeabilization (LMP) was triggered by AGEs, which likely resulted in a de...

ANG II promotes autophagy in podocytes

AJP: Cell Physiology, 2010

Podocytes are an integral and important constituent of the glomerular filtration barrier (GFB) and are exposed to a higher concentrations of ANG II in diseased states; consequently, podocytes may accumulate oxidized proteins and damaged mitochondria. In the present study, we evaluated the effect of ANG II on the podocyte autophagic process, which is likely to be triggered in order to degrade unwanted proteins and damaged organelles. To quantitate the occurrence of autophagy, electron microscopic studies were carried out on control and ANG II-treated conditionally immortalized mouse podocytes (CIMPs). ANG II-treated cells showed a fivefold greater number of autophagosomes/field compared with control cells. This proautophagic effect of ANG II was inhibited by pretreatment with 3-methyladenine, an inhibitor of autophagy. ANG II also enhanced podocyte expression of autophagic genes such as LC3-2 and beclin-1. Since oxidative stress is often associated with the induction of autophagy, we...

Podocytes maintain high basal levels of autophagy independent of mtor signaling

Autophagy, 2019

While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulation of these two key pathways of glomerular maintenance remained puzzling. We now report that long-term genetic manipulation of MTOR activity does in fact not influence high basal levels of autophagy in podocytes either in vitro or in vivo. Instead we present data showing that autophagy in podocytes is mainly controlled by AMP-activated protein kinase (AMPK) and ULK1 (unc-51 like kinase 1). Pharmacological inhibition of MTOR further shows that the uncoupling of MTOR activity and autophagy is time dependent. Together, our data reveal a novel and unexpected cell-specific mechanism, which permits concurrent MTOR activity as well as high basal autophagy rates in podocytes. Thus, these data indicate manipulation of the AMPK-ULK1 axis rather than inhibition of MTOR as a promising therapeutic intervention to enhance autophagy and preserve podocyte homeostasis in glomerular diseases.

Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation

Molecular and cellular biochemistry, 2017

Structural and functional impairment of podocytes plays an important role in the development of diabetic nephropathy, a chronic complication of diabetes mellitus and leading cause of renal failure requiring renal replacement therapy. Autophagy plays a crucial role in podocyte viability and function, and its activity is modulated by a variety of pathophysiological factors found in diabetic milieu. Here we show that downregulation of autophagy is critical for podocyte survival in hyperglycemic environment. Moreover, long-term exposure to high glucose leads to inhibition of autophagy as well as to the development of insulin resistance in podocytes. Furthermore, impairment of autophagy is involved in alteration of insulin-dependent glucose uptake in podocytes, suggesting a relationship between these two processes. Taken together, our findings suggest that downregulation of podocyte autophagy, observed after long-term exposure to high glucose, results from their suppressed sensitivity to...

Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis

The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelialspecific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.

mVps34 Deletion in Podocytes Causes Glomerulosclerosis by Disrupting Intracellular Vesicle Trafficking

Journal of the American Society of Nephrology, 2013

Recent studies have suggested that autophagy is a key mechanism in maintaining the integrity of podocytes. The mammalian homologue of yeast vacuolar protein sorting defective 34 (mVps34) has been implicated in the regulation of autophagy, but its role in podocytes is unknown. We generated a line of podocyte-specific mVps34-knockout (mVps34 pdKO) mice, which were born at Mendelian ratios. These mice appeared grossly normal at 2 weeks of age but exhibited growth retardation and were significantly smaller than control mice by 6 weeks of age, with no difference in ratios of kidney to body weight. mVps34 pdKO mice developed significant proteinuria by 3 weeks of age, developed severe kidney lesions by 5-6 weeks of age, and died before 9 weeks of age. There was striking podocyte vacuolization and proteinaceous casts, with marked glomerulosclerosis and interstitial fibrosis by 6 weeks of age. Electron microscopy revealed numerous enlarged vacuoles and increased autophagosomes in the podocytes, with complete foot process effacement and irregular and thickened glomerular basement membranes. Immunoblotting of isolated glomerular lysates revealed markedly elevated markers specific for lysosomes (LAMP1 and LAMP2) and autophagosomes (LC3-II/I). Immunofluorescence staining confirmed that the enlarged vacuoles originated from lysosomes. In conclusion, these results demonstrate an indispensable role for mVps34 in the trafficking of intracellular vesicles to protect the normal cellular metabolism, structure, and function of podocytes.

Faculty of 1000 evaluation for Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney

F1000 - Post-publication peer review of the biomedical literature, 2018

The endolysosomal system sustains the reabsorptive activity of specialized epithelial cells. Lysosomal storage diseases such as nephropathic cystinosis cause a major dysfunction of epithelial cells lining the kidney tubule, resulting in massive losses of vital solutes in the urine. The mechanisms linking lysosomal defects and epithelial dysfunction remain unknown, preventing the development of disease-modifying therapies. Here we demonstrate, by combining genetic and pharmacologic approaches, that lysosomal dysfunction in cystinosis results in defective autophagy-mediated clearance of damaged mitochondria. This promotes the generation of oxidative stress that stimulates Gα12/Src-mediated phosphorylation of tight junction ZO-1 and triggers a signaling cascade involving ZO-1-associated Y-box factor ZONAB, which leads to cell proliferation and transport defects. Correction of the primary lysosomal defect, neutralization of mitochondrial oxidative stress, and blockage of tight junction-associated ZONAB signaling rescue the epithelial function. We suggest a link between defective lysosome-autophagy degradation pathways and epithelial dysfunction, providing new therapeutic perspectives for lysosomal storage disorders.