Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases (original) (raw)

Nature Communications

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of H2O2 that fuels LPMO catalysis. Light-driven H2O2 formation is accompanied by oxidation of ring-conjugated olefins in the lignin, while LPMO-catalyzed oxidation of phenolic hydroxyls leads to the required priming reduction of the enzyme. The discovery that light-driven abiotic reactions in Nature can fuel H2O2-dependent redox enzymes involved in deconstructing lignocellulose may offer opportunities for bioprocessing ...

Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks

Biotechnology for biofuels, 2017

Many fungi boost the deconstruction of lignocellulosic plant biomass via oxidation using lytic polysaccharide monooxygenases (LPMOs). The application of LPMOs is expected to contribute to ecologically friendly conversion of biomass into fuels and chemicals. Moreover, applications of LPMO-modified cellulose-based products may be envisaged within the food or material industry. Here, we show an up to 75-fold improvement in LPMO-driven cellulose degradation using polyphenol oxidase-activated lignin building blocks. This concerted enzymatic process involves the initial conversion of monophenols into diphenols by the polyphenol oxidase MtPPO7 from Myceliophthora thermophila C1 and the subsequent oxidation of cellulose by MtLPMO9B. Interestingly, MtPPO7 shows preference towards lignin-derived methoxylated monophenols. Sequence analysis of genomes of 336 Ascomycota and 208 Basidiomycota reveals a high correlation between MtPPO7 and AA9 LPMO genes. The activity towards methoxylated phenolic ...

Transforming Lignin Biomass to Value: Interplay Between Ligninolytic Enzymes and Lignocellulose Depolymerization

BioEnergy Research

Lignin is the main constituent of lignocellulosic biomasses, which have a significant untapped ability to replace ecologically unfavorable and non-renewable fossil fuels. The lignin is broken down by ligninolytic bacteria, which also use a peripheral pathway to transform heterogeneous lignin derivatives into central intermediates like protocatechuate or catechol. By undergoing ring cleavage through the -ketoadipate pathway, these intermediates become metabolites by producing acetyl-CoA for internal product biosynthesis, including the creation of triacylglycerols and polyhydroxyalkanoates. Expanding our understanding of ligninolytic microbial communities, strains, and enzymes through bioprospecting can help us better understand the metabolism of aromatics. The most viable idea for sustainable development is the valorization of lignin into biopolymers as well as other high-value goods. This process is now being used to generate a variety of biopolymers, including polyesters, epoxies, ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.