Future fusion+: Breast cancer tissue identification and early detection of deep hybrid featured based healthcare system (original) (raw)
Related papers
Biomedical Diagnosis of Breast Cancer Using Deep Learning and Multiple Classifiers
Diagnostics
Breast cancer is considered one of the deadliest diseases in women. Due to the risk and threat it poses, the world has agreed to hold a breast cancer awareness day in October, encouraging women to perform mammogram inspections. This inspection may prevent breast-cancer-related deaths or reduce the death rate. The identification and classification of breast cancer are challenging tasks. The most commonly known procedure of breast cancer detection is performed by using mammographic images. Recently implemented algorithms suffer from generating accuracy below expectations, and their computational complexity is high. To resolve these issues, this paper proposes a fully automated biomedical diagnosis system of breast cancer using an AlexNet, a type of Convolutional Neural Network (CNN), and multiple classifiers to identify and classify breast cancer. This system utilizes a neuro-fuzzy method, a segmentation algorithm, and various classifiers to reach a higher accuracy than other systems ...
A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection
Computational Intelligence and Neuroscience
Cancer has been found as a heterogeneous disease with various subtypes and aims to destroy the body’s normal cells abruptly. As a result, it is essential to detect and prognosis the distinct type of cancer since they may help cancer survivors with treatment in the early stage. It must also divide cancer patients into high- and low-risk groups. While realizing efficient detection of cancer is frequently a time-taking and exhausting task with the high possibility of pathologist errors and previous studies employed data mining and machine learning (ML) techniques to identify cancer, these strategies rely on handcrafted feature extraction techniques that result in incorrect classification. On the contrary, deep learning (DL) is robust in feature extraction and has recently been widely used for classification and detection purposes. This research implemented a novel hybrid AlexNet-gated recurrent unit (AlexNet-GRU) model for the lymph node (LN) breast cancer detection and classification....
Transfer Learning using Alexnet with Support Vector Machine for Breast Cancer Detection
2020
Breast cancer is one of the leading causes of women death worldwide currently. Developing a computer-aided diagnosis system for breast cancer detection became an interesting problem for many researchers in recent years. Researchers focused on deep learning techniques for classification problems, including Convolutional Neural Networks (CNNs), which achieved great success. CNN is a particular type of deep, feedforward network that has gained attention from the research community and achieved great successes, especially in biomedical image processing. In this paper, transfer learning and deep feature extraction methods are used which adapt a pre-trained CNN model to classify breast cancer histopathological images from the publically available (BreakHis dataset). The data set includes both benign and malignant images with four different magnification factors. A patch strategy method proposed based on the extraction of image patches for training the CNN and the combination of these patc...
Hybrid convolution network for medical images processing and breast cancer detection
System research and information technologies
In this paper, the breast cancer detection problem using convolutional neural networks (CNN) is considered. The review of known works in this field is presented and analysed. Most of them rely only on feature extraction after the convolutions and use the precision of classification of malignant tumors as the main criterion. However, because of the huge number of parameters in the models, the time of computation is very large. A new structure of CNN is developed — a hybrid convolutional network consisting of convolutional encoder for features extraction and reduction of the complexity of the model and CNN for classification of tumors. As a result, it prevented overfitting the model and reduced training time. Further, while evaluating the performance of the convolutional model, it was suggested to consider recall and precision criteria instead of only accuracy like other works. The investigations of the suggested hybrid CNN were performed and compared with known results. After experim...
Intelligent Hybrid Deep Learning Model for Breast Cancer Detection
Electronics
Breast cancer (BC) is a type of tumor that develops in the breast cells and is one of the most common cancers in women. Women are also at risk from BC, the second most life-threatening disease after lung cancer. The early diagnosis and classification of BC are very important. Furthermore, manual detection is time-consuming, laborious work, and, possibility of pathologist errors, and incorrect classification. To address the above highlighted issues, this paper presents a hybrid deep learning (CNN-GRU) model for the automatic detection of BC-IDC (+,−) using whole slide images (WSIs) of the well-known PCam Kaggle dataset. In this research, the proposed model used different layers of architectures of CNNs and GRU to detect breast IDC (+,−) cancer. The validation tests for quantitative results were carried out using each performance measure (accuracy (Acc), precision (Prec), sensitivity (Sens), specificity (Spec), AUC and F1-Score. The proposed model shows the best performance measures (...
Classification of breast cancer types based on deep learning approach
International Journal of Advanced Trends in Computer Science and Engineering , 2021
Breast cancer is one of the most serious diseases that affect women, so it must be discovered in the early stages to avoid complications such as redness of the skin, pain in the armpits or breast, and discharge from a nipple, possibly containing blood. Recently, the CAD system that is based on the classification of microscopic image play a vital rule to limit cancer disease and reduce cases. Microscopic image is the currently recommended image system used to detect cancer. A computer-aided diagnosis system will help radiologists to accurately detection of cancerous cells and achieve the best result. This paper proposes a deep learning technique that exploits CAD system features and microscopic images to fight breast cancer. The proposed technique builds a classification model based on the DenseNet-161 deep learning method. The proposed model classifies the microscopic images of breast cancer into benign with four types and malignant with four types. Our proposed technique is experimentally tested and the result confirmed that a proposed technique outperforms baseline techniques.