Alleviation of physiological traits in lemongrass under salinity stress (original) (raw)

Abstract

Lemongrass is considered one of the most economic medicinal and aromatic plants, and there is a tendency to expand the production of such important plants in newly reclaimed soils, which often suffer from salt stresses. There are natural and synthetic substances that can help plants resist stress. Therefore, this study was conducted for the purpose of using some natural substances, Moringa oleifera leaf extract (MLE), Bacillus subtilis + arbuscular mycorrhizal fungi (B+A), and synthetic substances, such as benzyl amino purine (BAP), on lemongrass plants exposed to salt stress imposed by irrigation at 0, 1000, 2000, and 4000 ppm levels. Results indicated that an increasing trend of carbohydrate content by growth stimulants was noticed as follows: Moringa leaf extract (MLE) >Bacillus subtilis + arbuscular mycorrhizal (B+M) > benzyl amino purine (BAP). Foliar application by growth stimulants increased free proline content. Application of MLE, followed by B+M, gave the highest values of the free proline content in the two cuts for the two seasons compared to the control. It was proven that total phenol content was affected by the different growth stimulant treatments. Foliar application of the growth stimulants increased the total phenol content compared to the control. However, application of MLE resulted in the highest values of total phenol content in the two cuts for the two seasons compared to the control. Among the growth stimulants used, foliar spraying with MLE, followed by microorganisms (B+M), shows a superior effect in decreasing the accumulation of sodium and chlorine compared to other stimulants, while improving potassium was obtained by the growth stimulants MLE, B+A, and BAP, respectively, in both seasons.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (76)

  1. Abou El-Leel, O.F., El-Shayeb, N.S.A. & El-Azzony, E.A.A. (2018). Effect of proline on growth and the active ingredients of Moringa oleifera Lam. plant under salt stress. New Egyptian Journal of Microbiology, 51, 56-85.
  2. Afridi, M.S., Amna, Sumaira, Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., Khatoon, Z. et. al. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 139, 569-577.
  3. Ahanger, M.A. (2018). Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate glutathione cycle and glyoxalase system. PLoS ONE 13, 1-21.
  4. AOAC (1990).Official methods of analysis.15 th ed. Association of Official Analytical Chemist, Washington D.C. Abdel Latef, A.A., Abu Alhmad, M.F. & Hammad S.A. (2017). Foliar application of fresh moringa leaf extract overcomes salt stress in fenugreek (Trigonellafoenum-graecum) plants. Egyptian Journal of Botany, 57(1), 157-179.
  5. Abo Nouh, F.A., Abu-Elsaoud, A.M. & Abdel-Azeem, A.M. (2021). The role of endophytic fungi in combating abiotic stress on tomato. Microbial Biosystems, 6(1), 1037:35-48.
  6. Agati, G., Matteini, P., Goti, A. & Tattini, M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist, 174, 77-89.
  7. Ali, R., Gul, H., Hamayun, M., Rauf, Iqbal, M.A., Hussain, A. & Lee, I. (2022). Endophytic fungi controls the physicochemical status of maize crop under salt stress. Polish Journal of Environmental Studies, 31(1), 561-573.
  8. Alu'datt, M.H. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chemistry, 218, 99-106.
  9. Azadi, A., Hervan, E.M., Mohammadi, S.A., Moradi, F., Nakhoda, B. Vahabzade, M. & Mardi, M. (2011). Screening of recombinant inbred lines for salinity tolerance in bread wheat (Triticum aestivum L.). African Journal of Biotechnology, 10, 12875-12881.
  10. Bates, L.S. (1973). Rapid determination of free proline for water stress studied. Plant and Soil, 39, 205-207.
  11. Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F. & Marzouk, B. (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33, 1103-1111.
  12. Bohnert, H.J. & Jenson, R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14, 8997.
  13. Boukhatem, M.N., Ferhat, M.A., Kameli, A., Saidi, F. & Kebir, H.T. (2014). Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan Journal of Medicine, 9, 25431.
  14. Cappellari, L.D.R., Santoro, M.V., Schmidt, A., Gershenzon, J. & Banchio, E. (2020). Improving phenolic total content and monoterpene in Mentha × piperita by using salicylic acid or methyl jasmonate combined with Rhizobacteria inoculation. International Journal of Molecular Sciences, 21, 50.
  15. Chakraborty, U., Chakraborty, B.N., Chakraborty, A.P. & Dey, P.L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29, 789-803.
  16. Dawood, M.G. & El-Awadi, M.E. (2015). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biologica Colombiana, 20(2), 223-235.
  17. Demir, S. & Onogur, E. (1999). Glomus intraradices Schenck & Smith: a hopeful vesicular-arbuscular mycorrhizal (VAM) fungus determined in soils of Turkiye. Journal of Turkish Phytopathology, 28, 33-34.
  18. Desoky, E.M., Merwad, A.M. & Ibrahim, S.A. (2019). Humus materials and moringa (Moringa oleifera Lam.) leaf extract modulate the harmful effect of soil salinity stress in sudan grass (Sorghum vulgare L.). Egyptian Journal of Agronomy, 41(1), 29- 45.
  19. Dodd, I.C., Zinovkina, N.Y., Safronova, V.I. & Belimov, A.A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157, 361-379.
  20. Dowdy, S. & Wearden, S. (1983). Statistics for Research (Wiley Series in Probability and Statistics). Wonder Boock, Frederick, USA. Farooq, M., Wahid, A., Kobayashi, N., fujita, D. & Basra, S.M.A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29,185-212.
  21. Farouk, M.G., faisal, M.M.A. & Ibrahim, K.A. (2001). Response of wild mint (Mentha longifolia L. Huds. var. longifolia) plants to salinity stress. Egyptian Journal of Applied Science, 16(4), 39-52.
  22. Foidl, N., Makkar, H.P.S., Becker, K., Foild, N. & Km, S. (2001). The potential of Moringa oleifera for agricultural and industrial uses. What Development Potential Moringa Production? 20, 1-20.
  23. Foyer, C.H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142.
  24. Fuglie, L.J. (1999). The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics. Church World Service, Dakar.
  25. Garcia, C.L., Dattamudi, S., Chanda, S. & Jayachandran, K. (2019). Effect of salinity stress and microbial inoculations on Glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy, 9, 545.
  26. Ghaffari, M.R., Ghabooli, M., Khatabi, B., Hajirezaei, M.R., Schweizer, P. & Salekdeh, G.H. (2016). Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Molecular Biology, 90, 699-717.
  27. Ghassemi-Golezani, K. & Farhangi-Abriz, S. (2018). Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 166, 18- 25.
  28. Ghassemi-Golezani, K., Nikpour-Rashidabad, N. & Samea-Andabjadid, S. (2022). Application of growth promoting hormones alters the composition and antioxidant potential of dill essential oil under salt stress. Scientific Reports, 12, 14349.
  29. Goyal, A., Sharma, V. & Upadhyay, N. (2014). Flax and flaxseed oil: An ancient medicine & modern functional food. Journal of Food Science and Technology, 51, 1633-1653.
  30. Grattan, S.R. & Grieve, C.M. (1999). Salinity mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157.
  31. Grayer, R.J., Kite, G.C., Goldstone, F.J., Bryan, S.E., Paton, A. & Putievsky, E. (1996). Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry. 43, 1033-1039.
  32. Grover, M., Ali, S.K.Z., Sandhya, V., Rasul, A. & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231-1240.
  33. Gurmani, A.R., Bano, A., Khan, S.U., Din, J. & Zhang, J. L. (2011). Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science, 5(10), 1278-1285.
  34. Hajar, A.S., Zidan, M.A. & Al-Zahrani, H.S. (1996). Effect of salinity stress on germination, growth and some physiological activity of Black cumin (Nigella sativa) Arab Gulf. Journal of Scientific Research, 14(2), 445-454.
  35. Hansen, J. & Moller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68(1), 87-94.
  36. Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth, S. & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salts tress. Frontiers in Microbiology, 7, 1089.
  37. Hassan, F.A.S. & Fetouh, M.I. (2019). Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Scientia Horticulturae, 250, 287-293.
  38. Hassan, F., Al-Yasi, H., Ali, E., Alamer, K., Hessini, K., Attia, H. & El-Shazly, S. (2021). Mitigation of salt-stress effects by moringa leaf extract or salicylic acid through motivating antioxidant machinery in damask rose. Canadian Journal of Plant Science, 101, 157-165.
  39. Hassanein, R.A., Abdelkader, A.F. & Faramawy, H.M. (2019). Moringa leaf extracts as biostimulants-inducing salinity tolerance in the sweet basil plant. Egyptian Journal of Botany, 59(2), 303-318.
  40. Iqbal, M. & Ashraf, M. (2006). Wheat seed priming in relation to salt tolerance: growth, yield and levels of free salicylic acid and polyamines. Annales Botanici Fennici, 43, 250-259.
  41. Jackson, M.L. (1958). Soil Chemical Analysis, Prentice-Hall, London.
  42. Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, N.J. New Delhi, India.
  43. Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R. & Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73, 190-195.
  44. Ji, Z., Camberato, J.J., Zhang, C. & Jiang, Y. (2019). Effects of 6-Benzyladenine, Aminobutyric acid, and nitric oxide on plant growth, photochemical efficiency, and ion accumulation of perennial ryegrass cultivars to salinity stress. Hortscience, 54(8), 1418-1422.
  45. Keutgen, A.J. & Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65(23), 170-176.
  46. Kilany, A.E., El-Shenawy, I.E., Abd El-Ghany, A.A. & Ahmed, O.A. (2006). Salt tolerance of some grape rootstocks. Research Bulletin, Ain Shams Univ. pp.1-15.
  47. Kim, H.J., Fonseca, J.M., Choi, J.H., Kubota, C. & Kwon, D.Y. (2008). Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). Journal of Agricultural and Food Chemistry, 56, 3772-3776.
  48. Kunte, (2006). Osmoregulation in bacteria: compatible solute accumulation and osmosensing. Environmental Chemistry, 3, 94-99.
  49. Loake, G. & Grant, M. (2007). Salicylic acid in plant defence the players and protagonists. Current Opinion in Plant Biology, 10, 466-472.
  50. Malagoli, P., Britto, D.T., Schulze, L.M. & Kronzucker, H.J. (2008). Futile Na + cycling at the root plasma membrane in rice (Oryza sativa L.): Kinetics, energetics, and relationship to salinity tolerance. Journal of Experimental Botany, 59, 4109- 4117.
  51. Mangena, P. (2020). Role of benzyladenine seed priming on growth and physiological and biochemical response of soybean plants grown under high salinity stress condition. International Journal of Agronomy, 8847098, 1-5.
  52. Mukarram, M., Khan, M.M.A., Zehra, A., Petrik, P. & Kurjak, D. (2022). Suffer or survive: decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. Frontiers in Plant Science, 13, 903954.
  53. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250.
  54. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  55. Nathawat, N.S., Kuhad, M.S., Goswami, C.L., Patel, A.L. & Kumar, R. (2005).Nitrogen-metabolizing enzymes: effect of nitrogen sources and saline irrigation. Journal of Plant Nutrition, 28, 1089-1101.
  56. Noctor, G., Reichheld, J.P. & Foyer, C.H. (2018). ROS-related redox regulation and signaling in plants. Semin Cell and Developmental Biology, 80, 3-12.
  57. Pavarini, D.P., Pavarini, S.P., Niehues, M. & Lopes, N.P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176, 5-16.
  58. Pavlovic, I., Molinari´, S., Tarkowská, D., Oklestková, J., Novák, O., Lepeduš, H., Vujcˇic´ Bok, V., Radic´ Brkanac, S., Strnad, M. & Salopek-Sondi, B. (2019). Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, White cabbage and Kale. Frontiers in Plant Science, 10, 450.
  59. Rady, M.M., Bhavya, V.C. & Howladar, S.M. (2013). Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Scientia Horticulturae, 162, 63-70.
  60. Rahneshan, Z., Nasibi, F. & Moghadam, A.A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73-82.
  61. Rehman, Z., Hussain, A., Saleem, S., Khilji, S.A. & Sajid, Z.A. (2022). Exogenous application of salicylic acid enhances salt stress tolerance in lemongrass (Cymbopogon flexuosus Steud. Wats.). Pakistan Journal of Botany, 54(2), 371-378.
  62. Rodríguez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta, 1469, 1-30.
  63. Semida, W.M., Taha, R.S., Abdelhamid, M.T. & Rady, M.M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 95, 24-31.
  64. Shabala, S. & Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Plant Physiology, 133, 651-669.
  65. Shahbaz, M. & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32, 237-249.
  66. Shrivastava, P. & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131.
  67. Siddhuraju, P. & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51, 2144-2155.
  68. Siddiqui, M. H., Khan, M. N., Mohammad, F. & Khan, M.M.A. (2008). Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. Journal of Agronomy and Crop Science, 194, 214-224.
  69. Taiz, L. & Zeiger, E. (2010). Responses and Adaptations to Abiotic Stress. In Plant Physiology; Sinauer Associates, Inc.: Sunderland, MA, USA.
  70. Vanková, R. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and ABA responses, and ABA biosynthesis. Plant Cell, 23, 2169-2183.
  71. Vasco, C., Ruales, J. & Kamal-Eldin, A. (2008). Phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816-823.
  72. Wang, K., Shen, Y., Wang, H., He, S., Kim, W.S., Shang, W., Wang, Z. & Shi, (2022). Effects of exogenous salicylic acid (SA), 6-benzylaminopurine (6-BA), or abscisic acid (ABA) on the physiology of Rosa hybrida 'Carolla' under high- temperature stress. Horticulturae, 8(9), 851.
  73. Yang, R.Y., Tsou, S.C.S., Lee, T.C., Chang, L.C., Kuo, G. & Lai, P.Y. (2006). Moringa, a novel plant rich in antioxidants, bioavailable iron, and nutrients. In Proceedings of the ACS Symposium Series; ACS Publication: Washington, DC, USA, 925, 224-239.
  74. Yasmeen, A., Basra, S., Farooq, M., Ur Rehman, H. & Hussain, N. (2013). Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regulation, 69, 225-233.
  75. Zrige, A., Najar, B., Korany, S.M., Hassan, A.H.A., Alsherif, E.A., Shah, A.A., Fahad, S., Selim, S. & AbdElgawad, H. (2022). The interaction effect of laser irradiation and 6-benzylaminopurine improves the chemical composition and biological activities of linseed (Linum usitatissimum) Sprouts. Biology, 11, 1398.
  76. Zulfiqar, F., Casadesús, A., Brockman, H. & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 110194. Copyright: © 2023 by the authors. Licensee Multidisciplines. This work is an open-access article assigned in Creative Commons Attribution (CC BY 4.0) license terms and conditions (http://creativecommons.org/licenses/by/4.0/).