Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain) (original) (raw)

Chemotherapeutic drugs in Lebanese surface waters: estimation of population exposure and identification of high-risk drugs

Environmental risk assessment of anti-cancer drugs and their transformation products is a major concern worldwide due to two main factors: the consumption of chemotherapeutic agents is increasing throughout the years and conventional water treatment processes seem to be ineffective. The aim of the study is to investigate the consumption of anticancer drugs and assess their potential health hazard as contaminants of the Lebanese surface waters. Data on yearly consumption of 259 anti-neoplastic drugs over the years 2013 to 2018 were collected and the following parameters were calculated: yearly consumption of single active ingredients, yearly consumption of drug equivalents (for drugs belonging to the same pharmacologic class/ having the same active ingredient) and Predicted Environmental Concentrations (PECs). The classification of compounds into risk categories was based on exposure using PECs. The top five most commonly consumed drugs are Mycophenolate mofetil, Hydroxycarbamide, Ca...

Occurrence of anticancer drugs in the aquatic environment: a systematic review

Environmental Science and Pollution Research

Water contamination with pharmaceutical products is a well-studied problem. Numerous studies have demonstrated the presence of anticancer drugs in different water resources that failed to be eliminated by conventional wastewater treatment plants. The purpose of this report was to conduct a systematic review of anticancer drugs in the aquatic environment. The methodology adopted was carried out in compliance with the PRISMA guidelines. From the 75 studies that met the specific requirements for inclusion, data extracted showed that the most common anticancer drugs studied are cyclophosphamide, tamoxifen, ifosfamide and methotrexate with concentrations measured ranging between 0.01 and 86,200 ng/L. There was significant variation in the methodologies employed due to lack of available guidelines to address sampling techniques, seasonal variability and analytical strategy. The most routinely used technique for quantitative determination was found to be solid-phase extraction followed by ...

Prioritising anticancer drugs for environmental monitoring and risk assessment purposes

Science of The Total Environment, 2014

Anticancer drugs routinely used in chemotherapy enter wastewater through the excretion of the nonmetabolised drug following administration to patients. This study considers the consumption and subsequent behaviour and occurrence of these chemicals in aquatic systems, with the aim of prioritising a selection of these drugs which are likely to persist in the environment and hence be considered for environmental screening programmes. Accurate consumption data were compiled from a hospital survey in NW England and combined with urinary excretion rates derived from clinical studies. Physical-chemical property data were compiled along with likely chemical fate and persistence during and after wastewater treatment. A shortlist of 15 chemicals (from 65) was prioritised based on their consumption, persistency and likelihood of occurrence in surface waters and supported by observational studies where possible. The ecological impact of these 'prioritised' chemicals is uncertain as the measured concentrations in surface waters generally fall below standard toxicity thresholds. Nonetheless, this prioritised sub-list should prove useful for developing environmental screening programmes.

Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study

Journal of Hydrology, 2008

This opinion paper assesses for the UK, whether the current use of cytotoxic drugs, one of the most toxic pharmaceuticals in common use, could pose a risk to aquatic organisms and to humans through water recycling. A water quality model was set up for one of these drugs, 5-fluorouracil, in the Aire and Calder catchment in Northern UK. The study predicts 5-50 ng/L concentrations for long stretches of this catchment under low flow conditions. Due to their mode of action, practically all eukaryotic organisms are vulnerable to damage, with teratogenicity being the greatest concern at such levels. However, it is unclear to what extent the predicted low concentrations would affect flora and fauna in receiving waters but there may be an additive effect of a mixture of cytotoxic drugs which should be taken into account. The exposure of the pregnant mother, or more specifically her foetus, to these drugs via drinking water should be minimised. Current drinking water purification technology gives grounds for optimism on removal of these compounds, but no appropriate data exist yet.

A Human Health Risk Assessment of Pharmaceuticals in the Aquatic Environment

Human and Ecological Risk Assessment, 2002

Analyses were conducted on four pharmaceutical compounds, representing different therapeutic classes, to evaluate the presence and potential adverse human health effects of trace levels of these substances in aqueous environmental media. Acetylsalicylic acid, clofibrate, cyclophosphamide, and indomethacin have been detected in aqueous environmental media including sewage treatment plant effluent, surface water, drinking water, and groundwater. An extensive literature search and chemical-specific risk assessments were performed to assess the potential human health significance of each compound's individual presence in environmental media. Safe water quality limits were estimated for each pharmaceutical by following the USEPA Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health and were compared to the concentrations found in the environment. The calculation of the provisional ambient water quality criteria involved estimation of human exposure to contaminated water, including intake via bioaccumulation in fish, and calculation of cancer risk and non-cancer hazard indices. Parameters detailing the toxicological and pharmacological nature, exposure assessment, and environmental fate and transport of each pharmaceutical were also considered. The overall conclusion was that based on available data, no appreciable risk to humans exists, as the detected concentrations of each of these pharmaceutical compounds found in aqueous media were far below the derived safe limits.

Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment

Molecules, 2020

Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a review on their toxicity and environmental risk assessment (ERA) in different aquatic compartments, important issues to tackle the water framework directive (WFD). The toxicity data collected reported, with the exception of anxiolytics, at least one toxicity value for concentrations below 1 µg L −1. The results obtained for the ERA revealed risk quotients (RQs) higher than 1 in all the aquatic bodies and for the three trophic levels, algae, invertebrates and fish, posing ecotoxicological pressure in all of these compartments. The therapeutic groups with higher RQs were hormones, antiepileptics, anti-inflammatories and antibiotics. Unsurprisingly, RQs values were highest in wastewaters, however, less contaminated water bodies such as groundwaters still presented maximum values up to 91,150 regarding 17α-ethinylestradiol in fish. Overall, these results present an important input for setting prioritizing measures and sustainable strategies, minimizing their impact in the aquatic environment.

WASTEWATER TREATMENT PLANTS AS A PATHWAY FOR AQUATIC CONTAMINATION BY PHARMACEUTICALS IN THE EBRO RIVER BASIN (NORTHEAST SPAIN)

Environmental Toxicology and Chemistry, 2007

The occurrence of 28 pharmaceuticals of major human consumption in Spain, including analgesics and anti-inflammatories, lipid regulators, psychiatric drugs, antibiotics, antihistamines, and ␤-blockers, was assessed along the Ebro river basin, one of the biggest irrigated lands in that country. Target compounds were simultaneously analyzed by off-line solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry. The loads of detected pharmaceuticals and their removal rates were studied in seven wastewater treatment plants (WWTPs) located in the main cities along the basin. Total loads ranged from 2 to 5 and from 0.5 to 1.5 g/d/1,000 inhabitants in influent and effluent wastewaters, respectively. High removal rates (60-90%) were achieved mainly for analgesics and anti-inflammatories. The other groups showed lower rates, ranging from 20 to 60%, and in most cases, the antiepileptic carbamazepine, macrolide antibiotics, and trimethoprim were not eliminated at all. Finally, the contribution of WWTP effluents to the presence of pharmaceuticals in receiving river waters was surveyed. In receiving surface water, the most ubiquitous compounds were the analgesics and anti-inflammatories ibuprofen, diclofenac, and naproxen; the lipid regulators bezafibrate and gemfibrozil; the antibiotics erythromycin, azithromycin, sulfamethoxazole, trimethoprim, and less frequently, ofloxacin; the antiepileptic carbamazepine; the antihistamine ranitidine; and the ␤-blockers atenolol and sotalol. Although levels found in WWTP effluents ranged from low g/L to high ng/L, pharmaceuticals in river waters occurred at levels at least one order of magnitude lower (low ng/L range) because of dilution effect. From the results obtained, it was proved that WWTP are hot spots of aquatic contamination concerning pharmaceuticals of human consumption.