G Protein-Coupled Receptors in Anopheles gambiae (original) (raw)
Related papers
2006
The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four evolutionarily related G protein-coupled receptors (GPCRs) from this mosquito and expressed them in Chinese hamster ovary cells. After screening of a library of thirty-three insect or other invertebrate neuropeptides and eight biogenic amines, we could identify (de-orphanize) three of these GPCRs as: an adipokinetic hormone (AKH) receptor (EC 50 for A. gambiae AKH, 3 · 10 À9 M), a corazonin receptor (EC 50 for A. gambiae corazonin, 4 · 10 À9 M), and a crustacean cardioactive peptide (CCAP) receptor (EC 50 for A. gambiae CCAP, 1 · 10 À9 M). The fourth GPCR remained an orphan, although its close evolutionary relationship to the A. gambiae and other insect AKH receptors suggested that it is a receptor for an AKH-like peptide. This is the first published report on evolutionarily related AKH, corazonin, and CCAP receptors in mosquitoes.
A Cluster of Candidate Odorant Receptors from the Malaria Vector Mosquito, Anopheles gambiae
Chemical Senses, 2002
Olfaction is critical to the host preference selection behavior of many disease-transmitting insects, including the mosquito Anopheles gambiae sensu stricto (hereafter A. gambiae), one of the major vectors for human malaria. In order to more fully understand the molecular biology of olfaction in this insect, we have previously identified several members member of a family of candidate odorant receptor proteins from A. gambiae (AgORs). Here we report the cloning and characterization of an additional AgOR gene, denoted as AgOr5, which shows significant similarity to putative odorant receptors in A. gambiae and Drosophila melanogaster and which is selectively expressed in olfactory organs. AgOr5 is tightly clustered within the A. gambiae genome to two other highly homologous candidate odorant receptors, suggesting that these genes are derived from a common ancestor. Analysis of the developmental expression within members of this AgOR gene cluster reveals considerable variation between these AgORs as compared to candidate odorant receptors from D. melanogaster.
BMC Research Notes, 2014
Background: Olfaction plays a significant role in insect behavior during critical steps of their life-cycle, such as host-seeking during foraging or the search for a mate. Here, we explored genetic polymorphism within and divergence between sibling species of the African malaria mosquito, Anopheles gambiae sensu lato in the gene sequence and encoded peptides of an odorant receptor, Or39. This study included sympatric specimens of An. gambiae sensu stricto, An. coluzzii and An. arabiensis sampled together in the village of Dielmo, Senegal. Results: A 1,601 bp genomic sequence composed of 6 exons and 5 introns was obtained for Or39 from 6-8 mosquitoes in each of the 3 species. DNA sequence analysis revealed a high level of molecular polymorphism (π = 0.0154; Haplotype diversity = 0.867) and high overall genetic differentiation between taxa (Fst > 0.92, P < 0.01). In total, 50 parsimony informative sites were recorded. Throughout the whole dataset, there were 13 non-synonymous mutations resulting in aminoacid changes in the encoded protein. Each of the 6 different identified peptides was species-specific and none was shared across species. Most aminoacid changes were located on the intracellular domains of the protein. However, intraspecific polymorphisms in An. gambiae and An. arabiensis as well as species-specific mutations also occurred in the first extracellular domain. Conclusions: Although obtained from a limited number of specimens, our results point towards genetic differences between cryptic species within the An. gambiae complex in a gene of biological relevance that might be of evolutionary significance when exposed to disruptive selective forces.
Science in China Series C, 2004
Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken, and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e. A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A. gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue-and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.
BMC Genomics, 2013
Background Two sibling members of the Anopheles gambiae species complex display notable differences in female blood meal preferences. An. gambiae s.s. has a well-documented preference for feeding upon human hosts, whereas An. quadriannulatus feeds on vertebrate/mammalian hosts, with only opportunistic feeding upon humans. Because mosquito host-seeking behaviors are largely driven by the sensory modality of olfaction, we hypothesized that hallmarks of these divergent host seeking phenotypes will be in evidence within the transcriptome profiles of the antennae, the mosquito’s principal chemosensory appendage. Results To test this hypothesis, we have sequenced antennal mRNA of non-bloodfed females from each species and observed a number of distinct quantitative and qualitative differences in their chemosensory gene repertoires. In both species, these gene families show higher rates of sequence polymorphisms than the overall rates in their respective transcriptomes, with potentially imp...
ABSTRACTMosquitoes locate and approach humans (‘host-seek’) when specific Olfactory Neurons (ORNs) in the olfactory periphery activate a specific combination of glomeruli in the mosquito Antennal Lobe (AL). We hypothesize that dysregulating proper glomerular activation in the presence of human odor will prevent host-seeking behavior. In experiments aimed at ectopically activating most ORNs in the presence of human odor, we made a surprising finding: ectopic expression of an AgOr (AgOr2) in Anopheles gambiae ORNs dampens the activity of the expressing neuron. This contrasts studies in Drosophila melanogaster, the typical insect model of olfaction, in which ectopic expression of non-native ORs in ORNs confers ectopic neuronal responses without interfering with native olfactory physiology. To gain insight into this dysfunction in mosquitoes, RNA-seq analyses were performed comparing wild-type antennae to those ectopically expressing AgOr2 in ORNs. Remarkably, almost all Or transcripts ...
Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae
PLoS Biology, 2010
Anopheles gambiae is the principal Afrotropical vector for human malaria, in which olfaction mediates a wide range of both adult and larval behaviors. Indeed, mosquitoes depend on the ability to respond to chemical cues for feeding, host preference, and mate location/selection. Building upon previous work that has characterized a large family of An. gambiae odorant receptors (AgORs), we now use behavioral analyses and gene silencing to examine directly the role of AgORs, as well as a newly identified family of candidate chemosensory genes, the An. gambiae variant ionotropic receptors (AgIRs), in the larval olfactory system. Our results validate previous studies that directly implicate specific AgORs in behavioral responses to DEET as well as other odorants and reveal the existence of at least two distinct olfactory signaling pathways that are active in An. gambiae. One system depends directly on AgORs; the other is AgOR-independent and requires the expression and activity of AgIRs. In addition to clarifying the mechanistic basis for olfaction in this system, these advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in mosquitoes to reduce the catastrophic effects of malaria and other mosquito-borne diseases.
Proceedings of the National Academy of Sciences, 2004
Anopheles gambiae is a highly anthropophilic mosquito responsible for the majority of malaria transmission in Africa. The biting and host preference behavior of this disease vector is largely influenced by its sense of smell, which is presumably facilitated by G protein-coupled receptor signaling [Takken, W. & Knols, B. (1999) Annu. Rev. Entomol. 44, 131-157]. Because of the importance of host preference to the mosquitoes' ability to transmit disease, we have initiated studies intended to elucidate the molecular mechanisms underlying olfaction in An. gambiae. In the course of these studies, we have identified a number of genes potentially involved in signal transduction, including a family of candidate odorant receptors. One of these receptors, encoded by GPRor7 (hereafter referred to as AgOr7), is remarkably similar to an odorant receptor that is expressed broadly in olfactory tissues and has been identified in Drosophila melanogaster and other insects [Krieger, J., Klink, O., Mohl, C., Raming, K. & Breer, H. (2003) J. Comp. Physiol. A 189, 519 -526; Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. (1999) Cell 96, 725-736]. We have observed AgOr7 expression in olfactory and gustatory tissues in adult An. gambiae and during several stages of the mosquitoes' development. Within the female adult peripheral chemosensory system, antiserum against the AgOR7 polypeptide labels most sensilla of the antenna and maxillary palp as well as a subset of proboscis sensilla. Furthermore, AgOR7 antiserum labeling is observed within the larval antenna and maxillary palpus. These results are consistent with a role for AgOr7 in both olfaction and gustation in An. gambiae and raise the possibility that AgOr7 orthologs may also be of general importance to both modalities of chemosensation in other insects.