Neural responses to others’ pain vary with psychopathic traits in healthy adult males (original) (raw)
Related papers
BackgroundPsychopathic traits are associated with increases in antisocial behaviors such as aggression and are characterized by reduced empathy for others' distress. This suggests that psychopathic traits may also impair empathic pain sensitivity. However, whether psychopathic traits affect responses to the pain of others versus the self has not been previously assessed.Psychopathic traits are associated with increases in antisocial behaviors such as aggression and are characterized by reduced empathy for others' distress. This suggests that psychopathic traits may also impair empathic pain sensitivity. However, whether psychopathic traits affect responses to the pain of others versus the self has not been previously assessed.MethodWe used whole-brain functional magnetic resonance imaging to measure neural activation in 14 adolescents with oppositional defiant disorder or conduct disorder and psychopathic traits, as well as 21 healthy controls matched on age, gender, and intelligence. Activation in structures associated with empathic pain perception was assessed as adolescents viewed photographs of pain-inducing injuries. Adolescents imagined either that the body in each photograph was their own or that it belonged to another person. Behavioral and neuroimaging data were analyzed using random-effects analysis of variance.We used whole-brain functional magnetic resonance imaging to measure neural activation in 14 adolescents with oppositional defiant disorder or conduct disorder and psychopathic traits, as well as 21 healthy controls matched on age, gender, and intelligence. Activation in structures associated with empathic pain perception was assessed as adolescents viewed photographs of pain-inducing injuries. Adolescents imagined either that the body in each photograph was their own or that it belonged to another person. Behavioral and neuroimaging data were analyzed using random-effects analysis of variance.ResultsYouths with psychopathic traits showed reduced activity within regions associated with empathic pain as the depicted pain increased. These regions included rostral anterior cingulate cortex, ventral striatum (putamen), and amygdala. Reductions in amygdala activity particularly occurred when the injury was perceived as occurring to another. Empathic pain responses within both amygdala and rostral anterior cingulate cortex were negatively correlated with the severity of psychopathic traits as indexed by PCL:YV scores.Youths with psychopathic traits showed reduced activity within regions associated with empathic pain as the depicted pain increased. These regions included rostral anterior cingulate cortex, ventral striatum (putamen), and amygdala. Reductions in amygdala activity particularly occurred when the injury was perceived as occurring to another. Empathic pain responses within both amygdala and rostral anterior cingulate cortex were negatively correlated with the severity of psychopathic traits as indexed by PCL:YV scores.ConclusionsYouths with psychopathic traits show less responsiveness in regions implicated in the affective response to another's pain as the perceived intensity of this pain increases. Moreover, this reduced responsiveness appears to predict symptom severity.Youths with psychopathic traits show less responsiveness in regions implicated in the affective response to another's pain as the perceived intensity of this pain increases. Moreover, this reduced responsiveness appears to predict symptom severity.
Investigating the neural correlates of psychopathy: a critical review
Molecular Psychiatry, 2011
In recent years, an increasing number of neuroimaging studies have sought to identify the brain anomalies associated with psychopathy. The results of such studies could have significant implications for the clinical and legal management of psychopaths, as well as for neurobiological models of human social behavior. In this article, we provide a critical review of structural and functional neuroimaging studies of psychopathy. In particular, we emphasize the considerable variability in results across studies, and focus our discussion on three methodological issues that could contribute to the observed heterogeneity in study data: (1) the use of between-group analyses (psychopaths vs non-psychopaths) as well as correlational analyses (normal variation in 'psychopathic' traits), (2) discrepancies in the criteria used to classify subjects as psychopaths and (3) consideration of psychopathic subtypes. The available evidence suggests that each of these issues could have a substantial effect on the reliability of imaging data. We propose several strategies for resolving these methodological issues in future studies, with the goal of fostering further progress in the identification of the neural correlates of psychopathy.
Functional Neuroscience of Psychopathic Personality in Adults
Journal of Personality, 2014
Psychopathy is a personality disorder that involves a constellation of traits including callous-unemotionality, manipulativeness, and impulsiveness. Here we review recent advances in the research of functional neural correlates of psychopathic personality traits in adults.We first provide a concise overview of functional neuroimaging findings in clinical samples diagnosed with the PCL-R.We then review studies with community samples that have focused on how individual differences in psychopathic traits (variously measured) relate to individual differences in brain function. Where appropriate, we draw parallels between the findings from these studies and those with clinical samples. Extant data suggest that individuals with high levels of psychopathic traits show lower activity in affect-processing brain areas to emotional/salient stimuli, and that attenuated activity may be dependent on the precise content of the task.They also seem to show higher activity in regions typically associated with reward processing and cognitive control in tasks involving moral processing, decision making, and reward. Furthermore, affectiveinterpersonal and lifestyle-antisocial facets of psychopathy appear to be associated with different patterns of atypical neural activity. Neuroimaging findings from community samples typically mirror those observed in clinical samples, and largely support the notion that psychopathy is a dimensional construct.
While it is well established that individuals with psychopathy have a marked deficit in affective arousal, emotional empathy, and caring for the well-being of others, the extent to which perspective taking can elicit an emotional response has not yet been studied despite its potential application in rehabilitation. In healthy individuals, affective perspective taking has proven to be an effective means to elicit empathy and concern for others. To examine neural responses in individuals who vary in psychopathy during affective perspective taking, 121 incarcerated males, classified as high (n = 37; Hare psychopathy checklist-revised, PCL-R ≥ 30), intermediate (n = 44; PCL-R between 21 and 29), and low (n = 40; PCL-R ≤ 20) psychopaths, were scanned while viewing stimuli depicting bodily injuries and adopting an imagine-self and an imagine-other perspective. During the imagine-self perspective, participants with high psychopathy showed a typical response within the network involved in empathy for pain, including the anterior insula (aINS), anterior midcingulate cortex (aMCC), supplementary motor area (SMA), inferior frontal gyrus (IFG), somatosensory cortex, and right amygdala. Conversely, during the imagine-other perspective, psychopaths exhibited an atypical pattern of brain activation and effective connectivity seeded in the anterior insula and amygdala with the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC). The response in the amygdala and insula was inversely correlated with PCL-R Factor 1 (interpersonal/affective) during the imagine-other perspective. In high psychopaths, scores on PCL-R Factor 1 predicted the neural response in ventral striatum when imagining others in pain. These patterns of brain activation and effective connectivity associated with differential perspective-taking provide a better understanding of empathy dysfunction in psychopathy, and have the potential to inform intervention programs for this complex clinical problem.
NeuroImage, 2020
Psychopathic individuals are notorious for their callous disregard for others' emotions. Prior research has linked psychopathy to deficits in affective mechanisms underlying empathy (e.g., affective sharing), yet research relating psychopathy to cognitive mechanisms underlying empathy (e.g., affective perspective-taking and Theory of Mind) requires further clarification. To elucidate the neurobiology of cognitive mechanisms of empathy in psychopathy, we administered an fMRI task and tested for global as well as emotion-specific deficits in affective perspectivetaking. Adult male incarcerated offenders (N = 94) viewed images of two people interacting, with one individual's face obscured by a shape. Participants were cued to either identify the emotion of the obscured individual or identify the shape from one of two emotion or shape choices presented on each trial. Target emotions included anger, fear, happiness, sadness, and neutral. Contrary to predictions, psychopathy was unrelated to neural activity in the Affective Perspective-taking > Shape contrast. In line with predictions, psychopathy was negatively related to task accuracy during affective perspective-taking for fear, happiness, and sadness. Psychopathy was related to reduced hemodynamic activity exclusively during fear perspective-taking in several areas: left anterior insula extending into posterior orbitofrontal cortex, right precuneus, left superior parietal lobule, and left superior occipital cortex. Although much prior research has emphasized psychopathy-related abnormalities in affective mechanisms mediating empathy, current results add to growing evidence of psychopathy-related abnormalities in a cognitive mechanism related to empathy. These findings highlight brain regions that are hypoactive in psychopathy when explicitly processing another's fear.
Feeling but not caring: Empathic alteration in narcissistic men with high psychopathic traits
Psychiatry Research: Neuroimaging, 2014
Psychopathy is a personality disorder characterized by specific interpersonal-affective deficits and social deviance often marked by reduced empathy and decreased affective response to the suffering of others. However, recent findings in community samples suggest that the somatosensory resonance to other's pain measured with electroencephalography (EEG) is increased by psychopathic traits. This study aimed at comparing both the response to physical pain and the observation of pain being inflicted to another person in individuals with clinically significant psychopathic traits, namely patients with severe narcissistic personality disorder (NPD, n=11), and community controls (CC, n=13). The gating of somatosensory responses to a tactile steady-state stimulation (25 Hz) during the observation of painevoking and non-painful visual stimuli of hands was measured using EEG. Pain thresholds were assessed with a quantitative sensory testing (QST) battery. NPD compared with CC subjects showed similar thermal pain thresholds, but significantly higher pain pressure thresholds (PPT). Significantly greater somatosensory gating (SG) during the anticipation and the observation of pain in others was observed in NPD compared with CC subjects, but this difference was not associated with differences in self-pain perception. SG to pain observation was positively correlated with the Impulsivity-Egocentricity (IE) dimension of psychopathy. These findings demonstrated a stronger somatosensory resonance in the high psychopathic trait NPD group that suggests an increased somatic representation of observed pain despite lower dispositional empathy
No Differential Effects of Neural and Psychological Explanations of Psychopathy on Moral Behavior
Frontiers in Psychology, 2018
Research in neurocriminology has explored the link between neural functions and structures and the psychopathic disposition. This online experiment aimed to assess the effect of communicating the neuroscience of psychopathy on the degree to which lay people exhibited attitudes characteristic of psychopathy in particular in terms of moral behavior. If psychopathy is blamed on the brain, people may feel less morally responsible for their own psychopathic tendencies. In the study, participants read false feedback about their own psychopathic traits supposedly inferred from their Facebook likes, described either in neurobiological or cognitive terms. Participants were randomly allocated to read that they either had above-average or below-average psychopathic traits. We found no support for the hypothesis that the neuroscientific explanation of psychopathy influences moral behavior. This casts doubt on the fear that communicating the neuroscience of psychopathy will promote psychopathic attitudes.
The modulation of somatosensory resonance by psychopathic traits and empathy
Frontiers in Human Neuroscience, 2013
A large number of neuroimaging studies have shown neural overlaps between first-hand experiences of pain and the perception of pain in others. This shared neural representation of vicarious pain is thought to involve both affective and sensorimotor systems. A number of individual factors are thought to modulate the cerebral response to other's pain. The goal of this study was to investigate the impact of psychopathic traits on the relation between sensorimotor resonance to other's pain and self-reported empathy. Our group has previously shown that a steady-state response to non-painful stimulation is modulated by the observation of other people's bodily pain. This change in somatosensory response was interpreted as a form of somatosensory gating (SG). Here, using the same technique, SG was compared between two groups of 15 young adult males: one scoring very high on a self-reported measure of psychopathic traits [60.8 ± 4.98; Levenson's Self-Report Psychopathy Scale (LSRP)] and one scoring very low (42.7 ± 2.94). The results showed a significantly greater reduction of SG to pain observation for the high psychopathic traits group compared to the low psychopathic traits group. SG to pain observation was positively correlated with affective and interpersonal facet of psychopathy in the whole sample. The high psychopathic traits group also reported lower empathic concern (EC) scores than the low psychopathic traits group. Importantly, primary psychopathy, as assessed by the LSRP, mediated the relation between EC and SG to pain observation. Together, these results suggest that increase somatosensory resonance to other's pain is not exclusively explained by trait empathy and may be linked to other personality dimensions, such as psychopathic traits.