Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in Prostate Cancer Tunisian patients (original) (raw)

Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma

International Journal of Cancer, 2009

This study aimed to investigate the microRNA (miRNA) profile in prostate carcinoma tissue by microarray analysis and RT-qPCR, to clarify associations of miRNA expression with clinicopathologic data and to evaluate the potential of miRNAs as diagnostic and prognostic markers. Matched tumor and adjacent normal tissues were obtained from 76 radical prostatectomy specimens. Twenty-four tissue pairs were analyzed using human miRNA microarrays for 470 human miRNAs. Differentially expressed miRNAs were validated by TaqMan RT-qPCR using all 76 tissue pairs. The diagnostic potential of miRNAs was calculated by receiver operating characteristics analyses. The prognostic value was assessed in terms of biochemical recurrence using Kaplan-Meier and Cox regression analyses. Fifteen differentially expressed miRNAs were identified with concordant fold-changes by microarray and RT-qPCR analyses. Ten microRNAs were downregulated and 5 miRNAs (hsa-miR-96, hsa-miR-182, hsa-miR-182*, hsa-miR-183, hsa-375) were upregulated. Expression of 5 miRNAs correlated with Gleason score or pathological tumor stage. Already 2 microRNAs classified up to 84% of malignant and nonmalignant samples correctly. Expression of hsa-miR-96 was associated with cancer recurrence after radical prostatectomy and that prognostic information was confirmed by an independent tumor sample set from 79 patients. That was shown with hsa-miR-96 and the Gleason score as final variables in the Cox models build in the 2 patient sets investigated. Thus, differential miRNAs in prostate cancer are useful diagnostic and prognostic indicators. This study provides a solid basis for further functional analyses of miRNAs in prostate cancer.

miR-1207-3p Is a Novel Prognostic Biomarker of Prostate Cancer

Translational oncology, 2016

MicroRNAs (miRNAs) have been found to be dysregulated in prostate cancer (PCa). In this study, we investigated if miR-1207-3p is capable of distinguishing between indolent and aggressive PCa and if it contributes to explaining the disproportionate aggressiveness of PCa in men of African ancestry (moAA). A total of 404 patients with primary adenocarcinoma of the prostate were recruited between 1988 and 2003 at the Moffitt Cancer Center, Tampa, FL, USA. Patient clinicopathological features and demographic characteristics such as race were identified. RNA samples from 404 postprostatectomy prostate tumor tissue samples were analyzed by real-time quantitative reverse transcription polymerase chain reaction for the mRNA expression of miR-1207-3p. miR-1207-3p expression in PCa that resulted in overall death or PCa-specific death is significantly higher than in PCa cases that did not. The same positive correlation holds true for other clinical characteristics such as biochemical recurrence...

Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0)

Journal of Biomedical Informatics, 2011

Computational methods Prostate cancer (CaP) SID1.0 PicTar DIANA-MicroT 3.0 microRNA prediction Exhaustive search algorithm Fortran language a b s t r a c t To make faster and efficient the identification of mRNA targets common to more than one miRNA, and to identify new miRNAs modulated in specific pathways, a computer program identified as SID1.0 (simple String IDentifier) was developed and successfully applied in the identification of deregulated miRNAs in prostate cancer cells. This computationally inexpensive Fortran program is based on the strategy of exhaustive search and specifically designed to screen shared data (target genes, miRNAs and pathways) available from PicTar and DIANA-MicroT 3.0 databases. As far as we know this is the first software designed to filter data retrieved from available miRNA databases. SID1.0 takes advantage of the standard Fortran intrinsic functions for manipulating text strings and requires ASCII input files. In order to demonstrate SID1.0 applicability, some miRNAs expected from the literature to associate with cancerogenesis (miR-125b, miR-148a and miR-141), were randomly identified as main entries for SID1.0 to explore matching sequences of mRNA targets and also to explore KEGG pathways for the presence of ID codes of targeted genes. Besides genes and pathways already described in the literature, SID1.0 has proven to useful for predicting other genes involved in prostate carcinoma. These latter were used to identify new deregulated miRNAs: miR-141, miR-148a, miR-19a and miR-19b. Prediction data were preliminary confirmed by expression analysis of the identified miRNAs in androgen-dependent (LNCaP) and independent (PC3) prostate carcinoma cell lines and in normal prostatic epithelial cells (PrEC).

Identification of microRNA signature and potential pathway targets in prostate cancer

Experimental biology and medicine (Maywood, N.J.), 2016

Prostate cancer (PC) is the most common and the second leading cause of cancer-related death among American men. Early diagnosis is a prerequisite to improving therapeutic benefits. However, the current clinical biomarkers for PC do not reliably decipher indolent PC from other urogenital disorders. Thus, effective clinical intervention necessitates development of new biomarkers for early detection of PC. The present study aimed to identify the miRNA signature in organ-confined (Gleason Score 6) prostate tumors. MicroRNA (miRNA/miR) array analysis identified 118 upregulated and 73 downregulated miRNAs in microdissected tumors in comparison to matched neighboring normal prostate epithelium. The miRs-Plus-A1083, -92b-5p, -18a-3p, -19a-3p, -639, -3622b-3p, -3189-3p, -155-3p, -410, -1179, 548b-5p, and -4469 are predominantly expressed (7-11-fold), whereas miRs-595, 4490, -3120-5p, -1299, -21-5p, -3677-3, -let-7b-5p, -5189, 3-121-5p, -4518, -200a-5p, -3682-5p, -3689d, -3149 represent the ...

Identification and Validation of a Five MicroRNA Signature Predictive of Prostate Cancer Recurrence and Metastasis: A Cohort Study

Journal of Cancer, 2015

Background: MicroRNA (miRNA) have been shown to be important in regulating gene expression in prostate cancer. We used next generation miRNA sequencing to conduct a whole miRNome analysis to identify miRNAs associated with prostate cancer metastasis. Methods: We conducted discovery and validation analyses of miRNAs among a total of 546 men who underwent surgery for prostate cancer using the development of metastasis as an endpoint. Genome wide analysis was conducted among the discovery group (n=31) to identify new miRNAs associated with prostate cancer metastasis. Selected miRNAs were then analyzed using qPCR on prostatectomy specimens from an independent cohort (n=515) to determine whether their expression could predict the development of metastasis after surgery. To examine the biology underlying these associations, we created prostate cancer cell lines which overexpressed miR-301a for in vitro and in vivo functional assays. Results: We identified 33 miRNAs associated with prostate cancer metastasis and selected a panel comprising miRs-301a, 652, 454, 223 and 139 which strongly predicted metastasis (AUC=95.3%, 95%C.I.:84%-99%). Among the validation cohort, the 15-year metastasis-free survival was 77.5% (95% C.I.:63.9%-86.4%) for patients with a high miRNA panel score and 98.8% (95% C.I.:94.9%-99.7%, p<0.0001 for difference) for those with a low score. After adjusting for grade, stage, and PSA, the hazard ratio for metastasis was 4.3 (95% C.I.: 1.7-11.1, p=0.002) for patients with a high miRNA panel score, compared to those with a low score. Prostate cancer cell lines overexpressing miR-301a had in significantly higher tumor growth and metastasis in a xenograft mouse model. Conclusions: A panel of miRNAs is associated with prostate cancer metastasis. These could be used as potential new prognostic factors in the surgical management of prostate cancer.

Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue

European urology, 2015

Systematic approaches to functionally identify key players in microRNA (miRNA)-target networks regulating prostate cancer (PCa) proliferation are still missing. To comprehensively map miRNA regulation of genes relevant for PCa proliferation through phenotypic screening and tumor expression data. Gain-of-function screening with 1129 miRNA molecules was performed in five PCa cell lines, measuring proliferation, viability, and apoptosis. These results were integrated with changes in miRNA expression from two cohorts of human PCa (188 tumors in total). For resulting miRNAs, the predicted targets were collected and analyzed for patterns with gene set enrichment analysis, and for their association with biochemical recurrence free survival. Rank product statistical analysis was used to evaluate miRNA effects in phenotypic screening and for expression differences in the prostate tumor cohorts. Expression data were analyzed using the significance analysis of microarrays (SAM) method and the ...

Biomarker Potential of Plasma MicroRNA-150-5p in Prostate Cancer

Medicina

Background and Objectives: Over decades, prostate cancer (PCa) has become one of the leading causes of cancer mortality in men. Extensive evidence exists that microRNAs (miRNAs or miRs) are key players in PCa and a new class of non-invasive cancer biomarkers. Materials and Methods: We performed miRNA profiling in plasma and tissues of PCa patients and attempted the validation of candidate individual miRs as biomarkers. Results: The comparison of tissue and plasma profiling results revealed five commonly dysregulated miRs, namely, miR-130a-3p, miR-145-5p, miR-148a-3p, miR-150-5p, and miR-365a-3p, of which only three show concordant changes—miR-130a-3p and miR-150-5p were downregulated and miR-148a-3p was upregulated in both tissue and plasma samples, respectively. MiR-150-5p was validated as significantly downregulated in both plasma and tissue cancer samples, with a fold change of −2.697 (p < 0.001), and −1.693 (p = 0.035), respectively. ROC analysis showed an area under the curv...

MicroRNA profile analysis of human prostate cancers

2008

We examined the microRNA (miRNA) expression profile of 40 prostatectomy specimens from stage T2a/b, early relapse and nonrelapse cancer patients, to better understand the relationship between miRNA dysregulation and prostate oncogenesis. Paired analysis was carried out with microdissected, malignant and non-involved areas of each specimen, using high-throughput liquidphase hybridization (mirMASA) reactions and 114 miRNA probes. Five miRNAs (miR-23b,-100,-145,-221 and-222) were significantly downregulated in malignant tissues, according to significance analysis of microarrays and paired t-test with Bonferroni correction. Lowered expression of miR-23b,-145,-221 and-222 in malignant tissues was validated by quantitative reverse transcription (qRT)-PCR analyses. Ectopic expression of these miRNAs significantly reduced LNCaP cancer cell growth, suggesting growth modulatory roles for these miRNAs. Patient subset analysis showed that those with post-surgery elevation of prostatespecific antigen (chemical relapse) displayed a distinct expression profile of 16 miRNAs, as compared with patients with nonrelapse disease. A trend of increased expression (440%) of miR-135b and miR-194 was observed by qRT-PCR confirmatory analysis of 11 patients from each clinical subset. These findings indicate that an altered miRNA expression signature accompanied the prostate oncogenic process. Additional, aberrant miRNA expression features may reflect a tendency for early disease relapse. Growth inhibition through the reconstitution of miRNAs is potentially applicable for experimental therapy of prostate cancer, pending molecular validation of targeted genes.

MicroRNA Dysregulation in Prostate Cancer

Pharmacogenomics and Personalized Medicine, 2022

Prostate cancer biology is complex, and needs to be deciphered. The latest evidence reveals the significant role of noncoding RNAs, particularly microRNAs (miRNAs), as key regulatory factors in cancer. Therefore, the identification of altered miRNA patterns involved in prostate cancer will allow them to be used for development of novel diagnostic and prognostic biomarkers. Patients and Methods: We performed a miRNAs transcriptomic analysis, using microarray (10 matched pairs tumor tissue versus normal adjacent tissue, selected based on inclusion criteria), followed by overlapping with TCGA data. A total of 292 miRNAs were differentially expressed, with 125 upregulated and 167 downregulated in TCGA patients' cohort with PRAD (prostate adenocarcinoma), respectively for the microarray experiments; 16 upregulated and 44 downregulated miRNAs were found in our cohort. To confirm our results obtained for tumor tissue, we performed validation with qRT-PCR at the tissue and plasma level of two selected transcripts, and finally, we focused on the identification of altered miRNAs involved in key biological processes. Results: A common signature identified a panel of 12 upregulated and 1 downregulated miRNA, targeting and interconnected in a network with the TP53, AGO2, BIRC5 gene and EGFR as a core element. Among this signature, the overexpressed transcripts (miR-20b-5p, miR-96-5p, miR-183-5p) and the downregulated miR-542-5p were validated by qRT-PCR in an additional patients' cohort of 34 matched tumor and normal adjacent paired samples. Further, we performed the validation of the expression level for miR-20b-5p, miR-96-5p, miR-183-5p plasma, on the same patients' cohort versus a healthy control group, confirming the overexpression of these transcripts in the PRAD group, demonstrating the liquid biopsy as a potential investigational tool in prostate cancer. Conclusion: In this pilot study, we provide evidence on miRNA dysregulation and its association with key functional components of the PRAD landscape, where an important role is acted by miR-20b-5p, miR-542-5p, or the oncogenic cluster miR-183-96-182.

MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer

International Journal of Molecular Sciences

Dysregulation of miRNAs has a fundamental role in the initiation, development and progression of prostate cancer (PCa). The potential of miRNA in gene therapy and diagnostic applications is well documented. To further improve miRNAs’ ability to distinguish between PCa and benign prostatic hyperplasia (BPH) patients, nine miRNA (-21, -27b, -93, -141, -205, -221, -182, -375 and let-7a) with the highest reported differentiation power were chosen and for the first time used in comparative studies of serum and prostate tissue samples. Spearman correlations and response operating characteristic (ROC) analyses were applied to assess the capability of the miRNAs present in serum to discriminate between PCa and BPH patients. The present study clearly demonstrates that miR-93 and miR-375 could be taken into consideration as single blood-based non-invasive molecules to distinguish PCa from BPH patients. We indicate that these two miRNAs have six common, PCa-related, target genes (CCND2, MAP3K2...