HSI2/VAL1 Silences AGL15 to Regulate the Developmental Transition from Seed Maturation to Vegetative Growth in Arabidopsis (original) (raw)
Abstract
Gene expression during seed development in Arabidopsis thaliana is controlled by transcription factors including LEAFY COTYLEDON1 (LEC1) and LEC2, ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), known as LAFL proteins, and AGAMOUS-LIKE15 (AGL15). The transition from seed maturation to germination and seedling growth requires the transcriptional silencing of these seed maturation-specific factors leading to downregulation of structural genes including those that encode seed storage proteins, oleosins, and dehydrins. During seed germination and vegetative growth, B3-domain protein HSI2/VAL1 is required for the transcriptional silencing of LAFL genes. Here, we report chromatin immunoprecipitation analysis indicating that HSI2/VAL1 binds to the upstream sequences of the AGL15 gene but not at LEC1, ABI3, FUS3, or LEC2 loci. Functional analysis indicates that the HSI2/VAL1 B3 domain interacts with two RY elements upstream of the AGL15 coding region and at least one of them is required for HSI2/VAL1-dependent AGL15 repression. Expression analysis of the major seed maturation regulatory genes LEC1, ABI3, FUS3, and LEC2 in different genetic backgrounds demonstrates that HSI2/VAL1 is epistatic to AGL15 and represses the seed maturation regulatory program through downregulation of AGL15 by deposition of H3K27me3 at this locus. This hypothesis is further supported by results that show that HSI2/VAL1 physically interacts with the Polycomb Repressive Complex 2 component protein MSI1, which is also enriched at the AGL15 locus.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (58)
- Baud, S., et al. (2016). Deciphering the molecular mechanisms un- derpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed. Plant Physiol. 171: 1099-1112.
- Braybrook, S.A., Stone, S.L., Park, S., Bui, A.Q., Le, B.H., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2006). Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl. Acad. Sci. USA 103: 3468-3473.
- Chakravarty, S., Zeng, L., and Zhou, M.M. (2009). Structure and site- specific recognition of histone H3 by the PHD finger of human au- toimmune regulator. Structure 17: 670-679.
- Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.-H., Sung, Z.R., and Goodrich, J. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131: 5263-5276.
- Chhun, T., Chong, S.Y., Park, B.S., Wong, E.C., Yin, J.L., Kim, M., and Chua, N.H. (2016). HSI2 repressor recruits MED13 and HDA6 to down- regulate seed maturation gene expression eirectly during Arabidopsis early seedling growth. Plant Cell Physiol. 57: 1689-1706.
- Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
- Derkacheva, M., and Hennig, L. (2014). Variations on a theme: Pol- ycomb group proteins in plants. J. Exp. Bot. 65: 2769-2784.
- Du, L., Ali, G.S., Simons, K.A., Hou, J., Yang, T., Reddy, A.S., and Poovaiah, B.W. (2009). Ca 2+ /calmodulin regulates salicylic-acid- mediated plant immunity. Nature 457: 1154-1158.
- Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59: 387-415.
- Harding, E.W., Tang, W., Nichols, K.W., Fernandez, D.E., and Perry, S.E. (2003). Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS- Like 15. Plant Physiol. 133: 653-663.
- Heck, G.R., Perry, S.E., Nichols, K.W., and Fernandez, D.E. (1995). AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7: 1271-1282.
- Hennig, L., Taranto, P., Walser, M., Schönrock, N., and Gruissem, W. (2003). Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130: 2555-2565.
- Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179: 33-54.
- Hoppmann, V., Thorstensen, T., Kristiansen, P.E., Veiseth, S.V., Rahman, M.A., Finne, K., Aalen, R.B., and Aasland, R. (2011). The CW domain, a new histone recognition module in chromatin pro- teins. EMBO J. 30: 1939-1952.
- Jia, H., McCarty, D.R., and Suzuki, M. (2013). Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression. Plant Physiol. 163: 1293-1305.
- Jia, H., Suzuki, M., and McCarty, D.R. (2014). Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip. Rev. Dev. Biol. 3: 135-145.
- Jiang, D., Wang, Y., Wang, Y., and He, Y. (2008). Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabi- dopsis Polycomb repressive complex 2 components. PLoS One 3: e3404.
- Kagale, S., and Rozwadowski, K. (2011). EAR motif-mediated tran- scriptional repression in plants: an underlying mechanism for epi- genetic regulation of gene expression. Epigenetics 6: 141-146.
- Kazan, K. (2006). Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci. 11: 109-112.
- Kinoshita, T., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (2001). Polycomb repression of flowering during early plant development. Proc. Natl. Acad. Sci. USA 98: 14156-14161.
- Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., and Grossniklaus, U. (2003). The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17: 1540-1553.
- Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21: 397-402.
- Lee, W.Y., Lee, D., Chung, W.I., and Kwon, C.S. (2009). Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 58: 511- 524.
- Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442: 91-95.
- Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
- Lotan, T., Ohto, M., Yee, K.M., West, M.A., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (1998). Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195-1205.
- Luerßen, H., Kirik, V., Herrmann, P., and Miséra, S. (1998). FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 15: 755-764.
- Mehdi, S., Derkacheva, M., Ramström, M., Kralemann, L., Bergquist, J., and Hennig, L. (2016). The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune ab- scisic acid signaling. Plant Cell 28: 42-54.
- Mönke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H.P., Bäumlein, H., and Conrad, U. (2004). Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219: 158-166.
- Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional re- pressors share an essential motif for active repression. Plant Cell 13: 1959-1968.
- Perry, S.E., Nichols, K.W., and Fernandez, D.E. (1996). The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8: 1977-1989.
- Qüesta, J.I., Song, J., Geraldo, N., An, H., and Dean, C. (2016). Arabidopsis transcriptional repressor VAL1 triggers Polycomb si- lencing at FLC during vernalization. Science 353: 485-488.
- Reidt, W., Wohlfarth, T., Ellerström, M., Czihal, A., Tewes, A., Ezcurra, I., Rask, L., and Bäumlein, H. (2000). Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J. 21: 401-408.
- Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
- Schmitges, F.W., et al. (2011). Histone methylation by PRC2 is in- hibited by active chromatin marks. Mol. Cell 42: 330-341.
- Schneider, A., Aghamirzaie, D., Elmarakeby, H., Poudel, A.N., Koo, A.J., Heath, L.S., Grene, R., and Collakova, E. (2016). Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in de- veloping Arabidopsis thaliana embryos. Plant J. 85: 305-319.
- Schönrock, N., Exner, V., Probst, A., Gruissem, W., and Hennig, L. (2006). Functional genomic analysis of CAF-1 mutants in Arabi- dopsis thaliana. J. Biol. Chem. 281: 9560-9568.
- Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2001). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that in- duces embryo development. Proc. Natl. Acad. Sci. USA 98: 11806- 11811.
- Suzuki, M., Kao, C.Y., and McCarty, D.R. (1997). The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9: 799-807.
- Suzuki, M., Wang, H.H., and McCarty, D.R. (2007). Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo de- velopment by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 143: 902-911.
- Suzuki, M., and McCarty, D.R. (2008). Functional symmetry of the B3 network controlling seed development. Curr. Opin. Plant Biol. 11: 548-553.
- Suzuki, M., Wu, S., Li, Q., and McCarty, D.R. (2014). Distinct func- tions of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabi- dopsis. Plant Mol. Biol. 85: 179-191.
- Thakare, D., Tang, W., Hill, K., and Perry, S.E. (2008). The MADS- domain transcriptional regulator AGAMOUS-LIKE15 promotes so- matic embryo development in Arabidopsis and soybean. Plant Physiol. 146: 1663-1672.
- Tsukagoshi, H., Morikami, A., and Nakamura, K. (2007). Two B3 domain transcriptional repressors prevent sugar-inducible expres- sion of seed maturation genes in Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 104: 2543-2547.
- Tsukagoshi, H., Saijo, T., Shibata, D., Morikami, A., and Nakamura, K. (2005). Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol. 138: 675-685.
- Veerappan, V., Chen, N., Reichert, A.I., and Allen, R.D. (2014). HSI2/ VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings. BMC Plant Biol. 14: 293.
- Veerappan, V., Wang, J., Kang, M., Lee, J., Tang, Y., Jha, A.K., Shi, H., Palanivelu, R., and Allen, R.D. (2012). A novel HSI2 mutation in Arabidopsis affects the PHD-like domain and leads to derepression of seed-specific gene expression. Planta 236: 1-17.
- Wang, H., Niu, L., Fu, C., Meng, Y., Sang, D., Yin, P., Wu, J., Tang, Y., Lu, T., Wang, Z.Y., Tadege, M., and Lin, H. (2017). Over- expression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cyto- kinin homeostasis. PLoS Genet. 13: e1006649.
- Xiong, Y., McCormack, M., Li, L., Hall, Q., Xiang, C., and Sheen, J. (2013). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496: 181-186.
- Yamaguchi, N., Winter, C.M., Wu, M.F., Kwon, C.S., William, D.A., and Wagner, D. (2014). Protocols: Chromatin immunoprecipitation from Arabidopsis tissues. The Arabidopsis Book 12: e0170, doi/ 10.1199/tab.0170.
- Yamasaki, K., et al. (2004). Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16: 3448-3459.
- Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R., and Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot de- velopment and flowering in Arabidopsis. Plant Cell 13: 2471-2481.
- Yuan, W., Luo, X., Li, Z., Yang, W., Wang, Y., Liu, R., Du, J., and He, Y. (2016). A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48: 1527-1534.
- Zeng, L., Zhang, Q., Li, S., Plotnikov, A.N., Walsh, M.J., and Zhou, M.M. (2010). Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466: 258-262.
- Zhang, F., Wang, Y., Li, G., Tang, Y., Kramer, E.M., and Tadege, M. (2014). STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. Plant Cell 26: 650-664.
- Zhang, H., Zhang, J., Quan, R., Pan, X., Wan, L., and Huang, R. (2013). EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237: 1443- 1451.
- Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., and Perry, S.E. (2009). Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21: 2563-2577.
- Zhou, Y., et al. (2013). HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell 25: 134-148.