The effect of mutational robustness on the evolvability of multicellular organisms (original) (raw)

Abstract

Developmental robustness (canalization) is a common attribute of traits in multi-cellular organisms. High robustness ensures the reproducibility of phenotypes in the face of environmental and developmental noise, but it also dampens the expression of genetic mutation, the fuel for adaptive evolution. A reduction in robustness may therefore be adaptive under certain evolutionary scenarios. To better understand how robustness influences phenotypic evolution, and to decipher conditions under which canalization itself evolves, a genetic model was constructed in which phenotype is explicitly represented as a collection of traits, calculated from genotype, and the degree of robustness can be explicitly controlled. The genes were subjected to mutation, altering phenotype and fitness. We then simulated the dynamics of a population evolving under two classes of initial conditions, one in which the population is at a fitness optimum and one in which it is far away. The model is formulated with two robustness parameters in the genotype to phenotype map, controlling robustness over a tight (γ) or a broad (α) range of values. Within the robustness range determined by γ, high robustness results in a equilibrium population fitness closer to the optimal fitness value than low robustness. High robustness should be favored, therefore, under a constant optimal environment. This situation reverses when populations are challenged to evolve to a new phenotype optimum. In this situation, low robustness populations adapt faster than high robustness populations and reach higher equilibrium mean fitness. A larger set of phenotypes are accessable by mutation when robustness is low, in part explaining why low robustness is favored under this condition. A larger range of robustness could be sampled by varying α, revealing a complex relationship between robustness and both the initial rate of phenotypic adaptation as well as the final equilibrium population mean fitness. Intermediate values of α produced a bifurcation in evolutionary trajectories, with some populations remaining at low population mean fitness, and others escaping to achieve high population mean fitness. We then allowed robustness itself to be encoded by a mutable genetic locus that could co-evolve along with the phenotype under selection. Low robustness genotypes are initially favored 2. CC-BY-NC-ND 4.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (68)

  1. W. Ancel. A quantitative model of the simpson-baldwin effect. Journal of theoretical biology, 196(2):197-209, 1999.
  2. N. Barkai and S. Leibler. Robustness in simple biochemical networks. Nature, 387:913-917, 1997.
  3. A. Barrière, K. L. Gordon, and I. Ruvinsky. Distinct functional constraints partition sequence conservation in a cis-regulatory element. PLoS Genetics, 7:e1002095, 2011.
  4. I. Bjedov, O. Tenaillon, B. Gerard, V. Souza, E. Denamur, M. Radman, F. Taddei, and I. Matic. Stress-induced mutagenesis in bacteria. Science, 300(5624):1404-1409, 2003.
  5. J. D. Bloom, S. T. Labthavikul, C. R. Otey, and F. H. Arnold. Protein stability promotes evolv- ability. Proceedings of the National Academy of Sciences, 103(15):5869-5874, 2006.
  6. K. Bullaughey. Changes in selective effects over time facilitate turnover of enhancer sequences. Genetics, 187:567-582, 2011.
  7. J. J. Cassidy, A. R. Jha, D. M. Posadas, R. Giri, K. J. Venken, J. Ji, H. Jiang, H. J. Bellen, K. P. White, and R. W. Carthew. mir-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell, 155(7):1556-1567, 2013.
  8. H. Chanut-Delalande, I. Fernandes, F. Roch, F. Payre, and S. Plaza. Shavenbaby couples patterning to epidermal cell shape control. PLoS biology, 4(9):e290, 2006.
  9. B. Charlesworth. Background selection 20 years on the wilhelmine e. key 2012 invitational lecture. Journal of Heredity, 104(2):161-171, 2013.
  10. B. Charlesworth, M.T. Morgan, and D. Charlesworth. The effect of deleterious mutations on neutral molecular variation. Genetics, 134(4):1289-1303, 1993.
  11. A. Crombach and P. Hogeweg. Evolution of evolvability in gene regulatory networks. PLoS Com- putational Biology, 4(7):e1000112, 2008.
  12. J. F. Crow. 2. the concept of genetic load: a reply. American journal of human genetics, 15(3): 310, 1963.
  13. T. D. Cuypers, J. P. Rutten, and P. Hogeweg. Evolution of evolvability and phenotypic plasticity in virtual cells. BMC evolutionary biology, 17(1):60, 2017.
  14. J. A. Draghi, T. L. Parsons, G. P. Wagner, and J. B. Plotkin. Mutational robustness can facilitate adaptation. Nature, 463(7279):353-355, 2010.
  15. R. B. Dun and A. S. Fraser. Selection for an invariant charactervibrissa numberin the house mouse. Nature, 181(4614):1018-1019, 1958.
  16. H. Echols. Sos functions, cancer and inducible evolution. Cell, 25(1):1-2, 1981.
  17. I. M. Ehrenreich and D. W. Pfennig. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Annals of botany, 117(5):769-779, 2015.
  18. N. Eldredge and S. J. Gould. Punctuated equilibria: an alternative to phyletic gradualism. In T. J. M. Schopf, editor, Models in Paleobiology, pages 82-115.
  19. Freeman, Cooper, San Francisco, 1972. D. H. Erwin and E. H. Davidson. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10(2):141-148, 2009.
  20. I. Eshel and C. Matessi. Canalization, genetic assimilation and preadaptation: a quantitative genetic model. Genetics, 149(4):2119-2133, 1998.
  21. M. A. Félix and M. Barkoulas. Pervasive robustness in biological systems. Nature Reviews Genetics, 16(8):483-496, 2015.
  22. R. A. Fisher. The genetical theory of natural selection: a complete variorum edition. Oxford University Press, 1930.
  23. N. Frankel, G. K. Davis, D. Vargas, S. Wang, F. Payre, and D. L. Stern. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature, 466:490-493, 2010.
  24. R. S. Galhardo, P. J. Hastings, and S. M. Rosenberg. Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 42(5):399- 435, 2007.
  25. K. A. Geiler-Samerotte, Y. O. Zhu, B. E. Goulet, D. W. Hall, and M. L. Siegal. Selection transforms the landscape of genetic variation interacting with hsp90. PLoS Biology, 14(10):e2000465, 2016.
  26. G. Gibson. Decanalization and the origin of complex disease. Nature Reviews Genetics, 10(2): 134-140, 2009.
  27. G. Gibson and I. Dworkin. Uncovering cryptic genetic variation. Nature Reviews Genetics, 5(9): 681-690, 2004.
  28. G. Gibson and D. S. Hogness. Effect of polymorphism in the drosophila regulatory gene ultrabitho- rax on homeotic stability. Science, 271(5246):200, 1996.
  29. N. Gompel, B. Prud'homme, P. J. Wittkopp, V. A. Kassner, and S. B. Carroll. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in drosophila. Nature, 433 (7025):481-487, 2005.
  30. S. J. Gould and N. Eldredge. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3(02):115-151, 1977.
  31. D. Grigoriev, J. Reinitz, S. Vakulenko, and A. Weber. Punctuated evolution and robustness in mor- phogenesis. Biosystems, 123:106-113, 2014. doi: doi:10.1016/j.biosystems.2014.06.013. PMCID in process; PMID: 24996115.
  32. Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
  33. J. Haigh. The accumulation of deleterious genes in a populationmuller's ratchet. Theoretical Population Biology, 14(2):251-267, 1978.
  34. E. J. Hayden, E. Ferrada, and A. Wagner. Cryptic genetic variation promotes rapid evolutionary adaptation in an rna enzyme. Nature, 474(7349):92-95, 2011.
  35. B. Huang, G. Li, and X. H. Jiang. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem cell research & therapy, 6(1):35, 2015.
  36. S. Huang. The molecular and mathematical basis of waddington's epigenetic landscape: A frame- work for post-darwinian biology? BioEssays, 34(2):149-157, 2012.
  37. David Kirk. Saturation curve analysis and quality control. Shot Peener, 20(3):24, 2006.
  38. S. F. Levy and M. L. Siegal. Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biology., 6:e264, 2008. doi:10.1371/journal.pbio.0060264.
  39. Manu, S. Surkova, A. V. Spirov, V. Gursky, H. Janssens, A. Kim, O. Radulescu, C. E. Vanario- Alonso, D. H. Sharp, M. Samsonova, and J. Reinitz. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biology, 7:e1000049, 2009a. doi:10.371/journal.pbio.1000049 PMCID: PMC2653557.
  40. Manu, S. Surkova, A. V. Spirov, V. Gursky, H. Janssens, A. Kim, O. Radulescu, C. E. Vanario- Alonso, D. H. Sharp, M. Samsonova, and J. Reinitz. Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Computational Biology, 5: e1000303, 2009b. doi:10.1371/journal.pcbi.1000303 PMCID: PMC2646127.
  41. Manu, Michael Z. Ludwig, and Martin Kreitman. Sex-specific pattern formation during early Drosophila development. Genetics, 194:163-173, 2013.
  42. J. Masel. Evolutionary capacitance may be favored by natural selection. Genetics, 170(3):1359- 1371, 2005. J. Masel and M. L. Siegal. Robustness: mechanisms and consequences. Trends in genetics, 25(9): 395-403, 2009.
  43. C. Mayer and T. F. Hansen. Evolvability and robustness: A paradox restored. Journal of Theoretical Biology, 430:78-85, 2017.
  44. C. D. Meiklejohn and D. L. Hartl. A single mode of canalization. Trends in Ecology and Evolution, 17(10):468-473, 2002.
  45. B. P. Metzger, D. C. Yuan, J. D. Gruber, F. Duveau, and P. J. Wittkopp. Selection on noise constrains variation in a eukaryotic promoter. Nature, 521(7552):344-347, 2015.
  46. N. Moris, C. Pina, and A. M. Arias. Transition states and cell fate decisions in epigenetic landscapes. Nature Reviews Genetics, 17(11):693-703, 2016.
  47. A. B. Paaby and M. V. Rockman. Cryptic genetic variation: evolution's hidden substrate. Nature Reviews Genetics, 15(4):247-258, 2014.
  48. K. Palacio-López, B. Beckage, S. Scheiner, and J. Molofsky. The ubiquity of phenotypic plasticity in plants: a synthesis. Ecology and evolution, 5(16):3389-3400, 2015.
  49. M. Perry, A. N. Boettiger, J. P. Bothma, and M. Levine. Shadow enhancers foster robustness of Drosophila gastrulation. Current Biology, 20:1562-1567, 2010.
  50. D. M. Posadas and R. W. Carthew. Micrornas and their roles in developmental canalization. Current Opinion in Genetics & Development, 27:1-6, 2014.
  51. M. Radman. Phenomenology of an inducible mutagenic dna repair pathway in escherichia coli: Sos repair hypothesis. In Molecular and Environmental Aspects of Mutagenesis. 1974.
  52. J. M. Rendel. The canalization of the scute phenotype of Drosophila. Evolution, 13(4):425-439, June 1959. J. M. Rendel. Bristle pattern in scute stocks of drosophila melanogaster. The American Naturalist, 99(904):25-32, 1965.
  53. W. A. Rogers, S. Grover, S. J. Stringer, J. Parks, M. Rebeiz, and T. M. Williams. A survey of the trans-regulatory landscape for drosophila melanogaster abdominal pigmentation. Developmental biology, 385(2):417-432, 2014.
  54. N. Rohner, D. F. Jarosz, J. E. Kowalko, M. Yoshizawa, W. R. Jeffery, R. L. Borowsky, S. Lindquist, and C. J. Tabin. Cryptic variation in morphological evolution: Hsp90 as a capacitor for loss of eyes in cavefish. Science, 342(6164):1372-1375, 2013.
  55. S. L. Rutherford and S. Lindquist. Hsp90 as a capacitor for morphological evolution. Nature, 396: 336-342, 1998.
  56. W. Scharloo. Canalization: genetic and developmental aspects. Annual Review of Ecology and Systematics, 22(1):65-93, 1991.
  57. M. L. Siegal and A. Bergman. Waddington's canalization revisited: Developmental stability and evolution. Proceedings of the National Academy of Sciences USA, 99:10528-10532, 2002.
  58. George Gaylord Simpson. The baldwin effect. Evolution, 7(2):110-117, 1953.
  59. Alexander J Stewart, Todd L Parsons, and Joshua B Plotkin. Environmental robustness and the adaptability of populations. Evolution, 66(5):1598-1612, 2012.
  60. K. R. Thornton. A c++ template library for efficient forward-time population genetic simulation of large populations. Genetics, 198(1):157-166, 2014.
  61. C. H. Waddington. Canalization of development and the inheritance of acquired characters. Nature, 150:563-565, 1942.
  62. C. H. Waddington. Genetic assimilation of an acquired character. Evolution, 7(2):118-126, June 1953.
  63. A. J. Wagers, J. L. Christensen, and I. L. Weissman. Cell fate determination from stem cells. Gene therapy, 9(10):606, 2002.
  64. A. Wagner. Robustness and evolvability: a paradox resolved. Proceedings of the Royal Society of London B: Biological Sciences, 275(1630):91-100, 2008.
  65. A. Wagner. Does evolutionary plasticity evolve? Evolution, 50:1008-1023, 1996.
  66. G.P. Wagner, G. Booth, and H. Bagheri-Chaichian. A population genetic theory of canalization. Evolution, 51:329-347, 1997.
  67. Thomas Werner, Shigeyuki Koshikawa, Thomas M Williams, and Sean B Carroll. Generation of a novel wing colour pattern by the wingless morphogen. Nature, 464(7292):1143-1148, 2010.
  68. M. R. Wheeler. Drosophilidae. In J. F. McAlpine, editor, Manual of Nearctic Diptera, volume 2, pages 1011-1018. Agriculture Canada, Research Branch Otawa, 1987.