Plant molecular biology edited by D. von Wettstein and N. H. Chua, Plenum Press, 1987. $150/E83.35 (xi + 697 pages) ISBN 0 306 42696 X (original) (raw)
Related papers
Journal of Experimental Botany, 2014
The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2′-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation.
Chromosoma, 2001
We have studied the replication time, nuclear organization and histone acetylation patterns of distinct chromatin domains [nucleolus organizers (NORs), centromeres, euchromatin and heterochromatin] of barley during the cell cycle. The Rabl orientation of chromosomes, with centromeres and telomeres located at opposite nuclear poles, was found to be maintained throughout interphase. Replication started at the rDNA loci within nucleoli and then proceeded from the euchromatic distal chromosome regions toward the heterochromatic pole. Centromere association frequently occurred in mid-and late S-phase, i.e., during and after centromere replication. Euchromatin, centromeres and heterochromatin were found to be enriched in acetylated histone H4 (except for lysine 16) during their replication; then deacetylation occurred. The level of deacetylation of H4 in heterochromatin was more pronounced than in euchromatin. Deacetylation is finished in early G2-phase (lysine 8) or may last until mitosis or even the next G1-phase (lysines 5 and 12). The NORs were found to be most strongly acetylated at lysines 5 and 12 of H4 during mitosis, independently of their potential activity in nucleolus formation and rDNA transcription. The acetylation pattern of chromosomal histone H3 was characterized by low acetylation intensity at centromeres (lysines 9/18) and pericentromeric regions (lysine 14) and more intense uniform acetylation of the remaining chromatin; it remained fairly constant throughout the cell cycle. These results have been compared with the corresponding data published for mammals and for the dicot Vicia faba. This revealed conserved features as well as plant-or speciesspecific peculiarities. In particular, the connection of acetylation intensity of H4 at microscopically identifiable chromatin domains with replicational but not with transcriptional activity during the cell cycle seems to be conserved among eukaryotes.
Higher Order Chromatin Structures in Maize and Arabidopsis
The Plant Cell, 1998
We are investigating the nature of plant genome domain organization by using DNase I-and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the Ͼ 800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is ف 45 kb in maize and ف 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome.
Protoplasma, 1990
Nuclei of various tissues exhibit different structure in the maize root apex. Moreover, the nuclear structure is in close correlation with the DNA and RNA synthesis. These observations are in contradiction with the hypothesis according to which the chromatin organization in plant nuclei is species-specific and does not correspond to the metabolic activity of nuclei. The possible reasons for this disagreement are discussed. The extended state of chromatin is not the passive restflt of synthetic processes in the nucleus, but, on the contrary, it is one of the primary factors which are indispensable for the DNA transcription. Results presented here together with data from literature suggest that the organization of chromatin complex appears as a general control mechanism which determines the efficiency of other more specific mechanisms.
Chromatin dynamics during the plant cell cycle
Seminars in cell & developmental biology, 2008
Cell cycle progression depends on a highly regulated series of events of which transcriptional control plays a major role. In addition, during the S-phase not only DNA but chromatin as a whole needs to be faithfully duplicated. Therefore, both nucleosome dynamics as well as local changes in chromatin organization, including introduction and/or removal of covalent DNA and histone modifications, at genes with a key role in cell proliferation, are of primary relevance. Chromatin duplication during the S-phase and the chromosome segregation during mitosis are cell cycle stages critical for maintenance of epigenetic marks or for allowing the daughter products to acquire a distinct epigenetic landscape and, consequently, a unique cell fate decision. These aspects of chromatin dynamics together with the strict coupling of cell proliferation, cell differentiation and post-embryonic organogenesis have a profound impact on plant growth, development and response to external signals.
The architecture of interphase chromosomes and nucleolar transcription sites in plants
Journal of Structural Biology, 2002
Fluorescence in situ hybridization (FISH) coupled with confocal microscopy has been used to reveal the interphase chromosome organization in plants. In wheat and several other related species, we have shown that the interphase chromosomes are in a very well-defined organization, with centromeres and telomeres located at opposite sides of the nuclear envelope-a classic Rabl configuration. In transgenic wheat lines, FISH analysis of metaphase chromosomes has shown that multiple transgene copies can be integrated along a single chromosome, with large regions of intervening genomic sequence. These multiple copies are often colocalized in interphase, suggesting either an ectopic association or a highly reproducible interphase chromatin configuration. Bromouridine (BrU) incorporation has been used to label transcription sites in the nucleolus. Using pea root tissue, we have combined BrU incorporation with preembedding 1-nm gold detection to image the nucleolar transcription sites by electron microscopy. This has revealed many distinct elongated clusters of silver-gold particles. These clusters are 200-300 nm in length and are thicker at one end than the other. We suggest that each cluster corresponds to a single transcribed gene. Serial sectioning of several entire nucleoli has enabled the reconstruction of all the nucleolar transcription sites, and we have estimated that there are 200-300 transcribed genes per nucleolus.
Proceedings of the National Academy of Sciences, 2002
Heterochromatin in the model plant Arabidopsis thaliana is confined to small pericentromeric regions of all five chromosomes and to the nucleolus organizing regions. This clear differentiation makes it possible to study spatial arrangement and functional properties of individual chromatin domains in interphase nuclei. Here, we present the organization of Arabidopsis chromosomes in young parenchyma cells. Heterochromatin segments are organized as condensed chromocenters (CCs), which contain heavily methylated, mostly repetitive DNA sequences. In contrast, euchromatin contains less methylated DNA and emanates from CCs as loops spanning 0.2-2 Mbp. These loops are rich in acetylated histones, whereas CCs contain less acetylated histones. We identified individual CCs and loops by fluorescence in situ hybridization by using rDNA clones and 131 bacterial artificial chromosome DNA clones from chromosome 4. CC and loops together form a chromosome territory. Homologous CCs and territories were associated frequently. Moreover, a considerable number of nuclei displayed perfect alignment of homologous subregions, suggesting physical transinteractions between the homologs. The arrangement of interphase chromosomes in Arabidopsis provides a well defined system to investigate chromatin organization and its role in epigenetic processes.
Intragenomic Conflict Between the Two Major Knob Repeats of Maize
Genetics, 2013
Examples of meiotic drive, the non-Mendelian segregation of a specific genomic region, have been identified in several eukaryotic species. Maize contains the abnormal chromosome 10 (Ab10) drive system that transforms typically inert heterochromatic knobs into centromere-like domains (neocentromeres) that move rapidly poleward along the spindle during meiosis. Knobs can be made of two different tandem repeat sequences (TR-1 and 180-bp repeat), and both repeats have become widespread in Zea species.
Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin
The Plant journal : for cell and molecular biology, 2016
The inheritance and function of centromere are not strictly dependent on any specific DNA sequence, but involve an epigenetic component in most species. CENH3, a centromere histone H3 variant, is one of the best described epigenetic factors in centromere identity. However, the required chromatin features during centromere formation have not been revealed yet. We previously identified two de novo centromeres on maize minichromosomes derived from euchromatic sites with high-density gene distributions but low-density transposons distributions. The distribution of gene location and gene expression in these sites indicates that transcriptionally active regions can initiate de novo centromere formation and CENH3 seeding shows preference for gene-free regions or regions with no gene expression. The locations of expressed genes detected were at relatively hypomethylated loci, and the altered gene expression was due to the de novo centromere formation but not to the additional copy of minich...
The plant cell cycle: Pre-Replication complex formation and controls
Genetics and Molecular Biology, 2017
The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.