Citizen science and online data: Opportunities and challenges for snake ecology and action against snakebite (original) (raw)

Crowdsourcing snake identification with online communities of professional herpetologists and avocational snake enthusiasts

Royal Society Open Science, 2021

Species identification can be challenging for biologists, healthcare practitioners and members of the general public. Snakes are no exception, and the potential medical consequences of venomous snake misidentification can be significant. Here, we collected data on identification of 100 snake species by building a week-long online citizen science challenge which attracted more than 1000 participants from around the world. We show that a large community including both professional herpetologists and skilled avocational snake enthusiasts with the potential to quickly (less than 2 min) and accurately (69-90%; see text) identify snakes is active online around the clock, but that only a small fraction of community members are proficient at identifying snakes to the species level, even when provided with the snake's geographical origin. Nevertheless, participants showed great enthusiasm and engagement, and our study provides evidence that innovative citizen science/crowdsourcing approaches can play significant roles in training and building capacity. Although identification by an expert familiar with the local snake fauna will always be the gold standard, we suggest that healthcare workers, clinicians, epidemiologists and other parties interested in snakebite could become more connected to these communities, and that professional herpetologists and skilled avocational snake enthusiasts could organize ways to help connect medical professionals to crowdsourcing platforms. Involving skilled avocational snake enthusiasts in decision making could build the capacity of healthcare workers to identify snakes more quickly, specifically and accurately, and ultimately improve snakebite treatment data and outcomes.

Efficacy of an Online Native Snake Identification Search Engine for Public Use

Human–Wildlife Interactions, 2019

Visual methods of species identification are used both in research and recreational contexts because they are inexpensive, non-invasive, and believed to be effective among uniquely identifiable individuals. We examined the ability of the general public to identify live snakes (Serpentes) that are native to the United States using an online snake identification search engine (SISE) produced by the North America Brown Tree Snake Control Team (NABTSCT) website, http://www.nabtsct.net. The SISE consisted of participants answering 7 descriptive questions concerning a snake and then reviewing photographs of snakes that matched that description. Using 3 species of snakes native to Texas, USA, 21% of 395 participants were able to correctly identify all of the snakes using the online SISE, 54% correctly identified 2 snakes, 18% correctly identified 1 snake, and only 7% could not identify any snakes. Participants identified the distinctly marked checkered garter snake (Thamnophis marcianus) m...

Exploring snake occurrence records: Spatial biases and marginal gains from accessible social media

PeerJ, 2019

A species’ distribution provides fundamental information on: climatic niche, biogeography, and conservation status. Species distribution models often use occurrence records from biodiversity databases, subject to spatial and taxonomic biases. Deficiencies in occurrence data can lead to incomplete species distribution estimates. We can incorporate other data sources to supplement occurrence datasets. The general public is creating (via GPS-enabled cameras to photograph wildlife) incidental occurrence records that may present an opportunity to improve species distribution models. We investigated (1) occurrence data of a cryptic group of animals: non-marine snakes, in a biodiversity database (Global Biodiversity Information Facility (GBIF)) and determined (2) whether incidental occurrence records extracted from geo-tagged social media images (Flickr) could improve distribution models for 18 tropical snake species. We provide R code to search for and extract data from images using Flick...

Environmental drivers of tropical forest snake phenology: Insights from citizen science

Ecology and Evolution, 2023

Museum specimens and citizen science initiatives are valuable sources of information on how anthropogenic activities affect biodiversity and how species respond to rapid global change. Although tropical regions harbor most of the planet's biodiversity, investigations on species' phenological changes are heavily biased toward temperate regions. Such unevenness in phenological research is also taxonomically biased, with reptiles being the least studied group among tetrapod species regarding animal phenology. Herein, we used long-term time-series data to investigate environmentally driven changes in the activity pattern of tropical forest snakes. We gathered natural history collection and citizen science data for 25 snake species (five venomous and 20 non-venomous) from an Atlantic Forest region in southeastern Brazil. Using circular mixed-effects models, we investigate whether snake activity patterns followed the variation in environmental variables over a decade. Our results show that the activity pattern of Atlantic Forest snakes was seasonal and largely driven by average temperature and relative humidity. Since snakes are ectothermic animals, they are particularly sensitive to temperature variations, especially at small scales. Moreover, relative humidity can affect snake's seasonal activities through physiological constraints and/or prey availability. Most specimens were registered during the rainy season, with highly venomous snakes (lanceheads and coral snakes) emerging as the most abundant taxa. We highlight the importance of citizen science and natural history collections in better understanding biodiversity. Furthermore, our data obtained from local collectors underscore the need for environmental education programs and collaboration between researchers and local decision-makers to raise awareness and reduce conflicts between people and snakes in the region.

Dataset from the Snakes (Serpentes, Reptiles) collection of the Museu Paraense Emílio Goeldi, Pará, Brazil

Biodiversity Data Journal, 2019

We present a dataset with information from the snake collection of the Museu Paraense Emílio Goeldi, known as the “Ophidia Collection”. This collection currently has 26,728 specimens of snakes, including 9 families, 66 genera and 220 species. For the most part, it represents material from the Amazon Region. Specimens are preserved mostly in wet (alcohol) preparation, with some samples preserved in dry form, as is the case of the shells and skeletons of turtles. The dataset is now available for public consultation on the Global Biodiversity Information Facility portal (https://doi.org/10.15468/lt0wet).