Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study (original) (raw)
Related papers
Journal of Electrochemical Science and Engineering
Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bacterial resistance. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electrochemical AgNPs synthesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The formation of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmission electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 °C to mimic physiological con...
Silver nanoparticles have attracted great interests widely in medicine due to its great characteristics of antibacterial activity. In this research, the antibacterial activity and biocompatibility of a topical gel synthesized from polyvinyl alcohol, chitosan, and silver nanoparticles were studied. Hydrogels with different concentrations of silver nanoparticles (15 ppm, 30 ppm, and 60 ppm) were evaluated to compare their antibacterial activity, nanoparticles' sizes, and in vivo behaviors. The resulted silver nanoparticles in the hydrogel were characterized by TEM showing the nanoparticles' sizes less than 22 nm. The in vitro results prove that the antibacterial effects of all of the samples are satisfied. However, the in vivo results demonstrate the significant difference among different hydrogels in wound healing, where hydrogel with 30 ppm shows the best healing rate.
Materials Science and Engineering: C, 2019
We report the synthesis and in vitro evaluation of dual-function chitosan-silver nanoparticles (CTS-AgNPs) films with potential applications as wound dressings. We attempted to formulate nanocomposite films with appropriate AgNPs concentrations to simultaneously display antibacterial activity and suitability for cell culture. Nanocomposites were obtained by CTS-mediated in situ chemical reduction of AgNO 3. Circular-shape AgNPs (sizes ca. 7-50 nm) well distributed within the CTS matrices were obtained in concentrations from 0.018 to 0.573 wt.%. Efficacy (bacteriostatic and bactericidal properties) of CTS-AgNPs films to decrease planktonic and biofilm bacterial growth was AgNPs concentration-and bacteria strain-dependent. Films showed significant antibacterial activity against Gram-negative E. coli and P. aeruginosa and Gram-positive S. aureus. Antibacterial activity against S. epidermidis was moderated. Films suitability for cell culture was characterized using primary human fibroblasts (HF). HF displayed cell viability higher than 90% and the characteristic fusiform morphology of adhered fibroblast upon culture on films with AgNPs concentration 0.036 wt.%. HF cultured on these films also showed positive expression of tropoelastin, procollagen type I and Ki-67, characteristic proteins of extracellular matrix and proliferative cells, respectively. In vitro assays demonstrated that cytocompatibility/antibacterial properties decreased/increased as silver concentration increased, suggesting that CTS-AgNPS nanocomposite films with ≈ 0.04-0.20 wt.% might be considered as potential temporary dual-function wound dressings.
Nanomaterials, 2021
The prompt treatment of burn wounds is essential but can be challenging in remote parts of Africa, where burns from open fires are a constant hazard for children and suitable medical care may be far away. Consequently, there is an unmet need for an economical burn wound dressing with a sustained antimicrobial activity that might be manufactured locally at low cost. This study describes and characterizes the novel preparation of a silver nitrate-loaded/poly(vinyl alcohol) (PVA) film. Using controlled heating cycles, films may be crosslinked with in situ silver nanoparticle production using only a low heat oven and little technical expertise. Our research demonstrated that heat-curing of PVA/silver nitrate films converted the silver to nanoparticles. These films swelled in water to form a robust, wound-compatible hydrogel which exhibited controlled release of the antibacterial silver nanoparticles. An optimal formulation was obtained using 5% (w/w) silver nitrate in PVA membrane films...
Applied Nanoscience, 2012
Hydrogels are water-insoluble crosslinked hydrophilic networks capable of retaining a large amount of water. The present work aimed to develop a novel chitosan-PVA-based hydrogel which could behave both as a nanoreactor and an immobilizing matrix for silver nanoparticles (AgNPs) with promising antibacterial applications. The hydrogel containing AgNPs were prepared by repeated freeze-thaw treatment using varying amounts of the crosslinker, followed by in situ reduction with sodium borohydride as a reducing agent. Characterization studies established that the hydrogel provides a controlled and uniform distribution of nanoparticles within the polymeric network without addition of any further stabilizer. The average particle size was found to be 13 nm with size distribution from 8 to 21 nm as per HR-TEM studies.
2012
Hydrogels are water-insoluble crosslinked hydrophilic networks capable of retaining a large amount of water. The present work aimed to develop a novel chitosan-PVA-based hydrogel which could behave both as a nanoreactor and an immobilizing matrix for silver nanoparticles (AgNPs) with promising antibacterial applications. The hydrogel containing AgNPs were prepared by repeated freeze-thaw treatment using varying amounts of the crosslinker, followed by in situ reduction with sodium borohydride as a reducing agent. Characterization studies established that the hydrogel provides a controlled and uniform distribution of nanoparticles within the polymeric network without addition of any further stabilizer. The average particle size was found to be 13 nm with size distribution from 8 to 21 nm as per HR-TEM studies.
ACS Sustainable Chemistry & Engineering, 2022
Lauric arginate (LAE) and cinnamon oil (CO) combination results in synergistic antimicrobial effect on Gram-positive bacteria but antagonistic effect on Gram-negative bacteria. We recently observed that ethylenediaminetetraacetate (EDTA) enhanced the activity of LAE and overcame the antagonistic effect of LAE-CO combination. The objective of this work was to study physical and antimicrobial properties of chitosan films with LAE, CO, and EDTA. A significant increase in the thickness was detected after incorporating antimicrobials in chitosan films. The yellowness of films increased, while water solubility decreased as the concentration of CO increased. Water vapor permeability of films increased with the addition of the antimicrobials. Incorporation of antimicrobials in chitosan films lowered the tensile strength but did not affect elongation%. CO content in the films was significantly higher with at a higher LAE content. Much larger inhibition zones of film discs with antimicrobials against foodborne pathogens were detected compared to those of films with chitosan only. Addition of EDTA enhanced the antimicrobial activity of films with LAE, while binding by CO reduced the amount LAE diffusing from films to the media to inhibit bacteria. Overall, these novel antimicrobial films with LAE, CO, and EDTA showed potential to improve the safety of food products.
Synthesis of silver nanoflakes on chitosan hydrogel beads and their antimicrobial potential
International Journal of Polymer Analysis and Characterization, 2020
The present study involves the fabrication of CH and CH-Ag hydrogel beads and the investigation of the antimicrobial properties. The beads were fabricated using a simple coacervation method. The successfully synthesized beads were characterized by UV-Vis and FTIR. The surface morphology, shape and diameter of the samples were determined by optical microscopy and SEM. The antimicrobial activities were determined against potential human pathogens including bacterial and fungal species. Our results demonstrated that beads can be utilized as potential materials for use in biomedical approaches including delivery systems and tissue engineering applications to prevent microbial contamination and to inhibit the growth of microorganisms.
Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds
Journal of Materials Science: Materials in Medicine, 2015
Treatment of non-healing wounds represents hitherto a severe dilemma because of their failure to heal caused by repeated tissue insults, bacteria contamination and altered physiological condition. This leads to face huge costs for the healthcare worldwide. To this end, the development of innovative biomaterials capable of preventing bacterial infection, of draining exudates and of favoring wound healing is very challenging. In this study, we exploit a novel technique based on the slow diffusion of tripolyphosphate for the preparation of macroscopic chitosan hydrogels to obtain soft pliable membranes which include antimicrobial silver nanoparticles (AgNPs) stabilized by a lactose-modified chitosan (Chitlac). UV-Vis and TEM analyses demonstrated the time stability and the uniform distribution of AgNPs in the gelling mixture, while swelling studies indicated the hydrophilic behavior of membrane. A thorough investigation on bactericidal properties of the material pointed out the synergistic activity of chitosan and AgNPs to reduce the growth of S. aureus, E. coli, S. epidermidis, P. aeruginosa strains and to break apart mature biofilms. Finally, biocompatibility assays on keratinocytes and fibroblasts did not prove any harmful effects on the viability of cells. This novel technique enables the production of bioactive membranes with great potential for the treatment of non-healing wounds.
Journal of Applied Pharmaceutical Science, 2019
Authors report the synthesis of sodium alginate-polyvinyl alcohol-g-acrylamide (NaAlg-PVA-g-AAm) nanocomposite hydrogels modified with silver nanoparticles (AgNPs) as an antibacterial agent. In this work, we used NaAlg isolated directly from brown algae and studied the effects of the NaAlg weight ratio and silver-ion concentration on the network matrix in the hydrogels via in situ polymerization. Successfully synthesized nanocomposites were characterized using Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic absorption spectrometry. The best results were achieved with an average AgNPs size of approximately 20 nm allowing the AgNPs to be absorbed in the nanocomposite hydrogel matrix. Nanocomposite hydrogels displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of silver nitrate (AgNO 3) for E. coli and S. aureus were 46.251 and 75.220 ppm, respectively. Conversely, the minimum bactericidal concentrations (MBCs) of AgNO 3 for these bacteria were 185.004 and 300.880 ppm, respectively. The MBC/MIC ratio of the AgNO 3 modified nanocomposite hydrogels was four for both bacteria. The results illustrated that the nanocomposite hydrogels had good antibacterial activity against Gram-positive and Gramnegative bacteria and can be suitable for applications in wound treatments.