Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram‐positive bacteria (original) (raw)

SummaryWe have reported previously that copper I and II ionic species, and superoxide but not Fenton reaction generated hydroxyl radicals, are important in the killing mechanism of pathogenic enterococci on copper surfaces. In this new work we determined if the mechanism was the same in non‐pathogenic ancestral (K12) and laboratory (DH5α) strains, and a pathogenic strain (O157), of Escherichia coli. The pathogenic strain exhibited prolonged survival on stainless steel surfaces compared with the other E. coli strains but all died within 10 min on copper surfaces using a ‘dry’ inoculum protocol (with approximately 107 cfu cm−2) to mimic dry touch contamination. We observed immediate cytoplasmic membrane depolarization, not seen with enterococci or methicillin resistant Staphylococcus aureus, and loss of outer membrane integrity, inhibition of respiration and in situ generation of reactive oxygen species on copper and copper alloy surfaces that did not occur on stainless steel. Chelati...