MMP-Sensitive PEG Diacrylate Hydrogels with Spatial Variations in Matrix Properties Stimulate Directional Vascular Sprout Formation (original) (raw)
Related papers
Journal of Biomaterials Science, Polymer Edition
Insufficient vascularization limits the volume and complexity of biomaterials-based tissue engineering approaches. The formation of new blood vessels (neovascularization) is regulated by a complex interplay of cellular interactions with biochemical and biophysical signals provided by the extracellular matrix (ECM) which necessitates the development of biomaterial approaches that enable systematic modulation in matrix properties. Poly(ethylene) glycol-based hydrogel scaffolds were engineered with a range of decoupled and combined variations in integrin-binding peptide (RGD) ligand concentration, elastic modulus and proteolytic degradation rate using free-radical polymerization chemistry. The modularity of this system enabled a full factorial experimental design to simultaneously investigate the individual and interaction effects of these matrix cues on vascular sprout formation in 3D culture. Enhancements in scaffold proteolytic degradation rate promoted significant increases in vascular sprout length and junction number while increases in modulus significantly and negatively impacted vascular sprouting. We also observed that individual variations in immobilized RGD concentration did not significantly impact 3D vascular sprouting. Our findings revealed a previously unidentified and optimized combination whereby increases in both immobilized RGD concentration and proteolytic degradation rate resulted in significant and synergistic enhancements in 3D vascular spouting. The above-mentioned findings would have been challenging to uncover using one-factor-at-time experimental analyses.
Capillary morphogenesis in PEG-collagen hydrogels
Biomaterials, 2013
A wide variety of hydrogels have been explored as 3D culture platforms and for applications in tissue engineering. Hydrogels formed from natural extracellular matrix (ECM) proteins readily support the formation of vasculature in vitro, but only a handful of hydrogels composed of synthetic materials have shown anything comparable. This relative lack of synthetic material options has hindered efforts to better understand how ECM cues direct vascularization. We developed a biosynthetic hydrogel consisting of polyethylene glycol diacrylamide conjugated to macromolecular type-I collagen. Through their acrylamide-based cross-links, these materials allow for independent control of physical properties and bulk ligand concentration. These hydrogels exhibited hydrolytic stability, but the collagen component retained its susceptibility to enzymatic remodeling. Photoencapsulation of endothelial cells and fibroblasts within this hydrogel material and their subsequent co-culture led to the formation of capillary vessel-like networks with well-defined hollow lumens. Capillary formation was prevented by inhibiting matrix metalloproteinase (MMP) activity, recapitulating the MMP-dependence of vascularization observed in natural hydrogels. These findings validate the utility of this material platform to decipher how the ECM regulates capillary morphogenesis and to support the formation of vascularized tissue constructs for potential applications in regenerative medicine.
Acta Biomaterialia, 2012
Controlled scaffold degradation is a critical design criterion for the clinical success of tissue engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study the effect of proteolytic cleavage site presentation on hydrogel degradation rate and 3D fibroblast invasion in vitro. Through the incorporation of multiple collagenasesensitive domains between crosslinks, hydrogel degradation rate was controlled and enhanced independent of alterations in compressive modulus. As compared to SSite hydrogels, MSite hydrogels resulted in increased 3D fibroblast invasion in vitro which occurred over a wider range of compressive modulus. Furthermore, encapsulated soluble acidic fibroblast growth factor (FGF-1), a potent mitogen during processes such as vascularization and wound healing, was incorporated into SSite and MSite PEGDA scaffolds to determine its in vitro potential on fibroblast cell invasion. Hydrogels containing soluble FGF-1 significantly enhanced 3D fibroblast invasion in a dose-dependent manner within the different types of PEG matrices investigated over a period of 15 days. The methodology presented provides flexibility in designing PEG scaffolds with desired mechanical properties, but with increased susceptibility to proteolytically-mediated degradation. These results indicate that effective tuning of initial matrix stiffness and hydrogel degradation kinetics plays a critical role in effectively designing PEG scaffolds that promote controlled 3D cellular behavior and in situ tissue regeneration.
Rapid Generation of Biologically Relevant Hydrogels Containing Long-Range Chemical Gradients
Advanced Functional Materials, 2010
Many biological processes are regulated by gradients of bioactive chemicals. Thus, the generation of materials with embedded chemical gradients may be beneficial for understanding biological phenomena and generating tissue-mimetic constructs. Here a simple and versatile method to rapidly generate materials containing centimeter-long gradients of chemical properties in a microfluidic channel is described. The formation of a chemical gradient is initiated by a passive-pump-induced forward flow and further developed during an evaporation-induced backward flow. The gradient is spatially controlled by the backward flow time and the hydrogel material containing the gradient is synthesized via photopolymerization. Gradients of a cell-adhesion ligand, Arg-Gly-Asp-Ser (RGDS), are incorporated in poly(ethylene glycol)-diacrylate (PEG-DA) hydrogels to test the response of endothelial cells. The cells attach and spread along the hydrogel material in a manner consistent with the RGDS-gradient profile. A hydrogel containing a PEG-DA concentration gradient and constant RGDS concentration is also shown. The morphology of cells cultured on such hydrogel changes from round in the lower PEG-DA concentration regions to well-spread in the higher PEG-DA concentration regions. This approach is expected to be a valuable tool to investigate the cell–material interactions in a simple and high-throughput manner and to design graded biomimetic materials for tissue engineering applications.
Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis
Biomaterials, 2011
The nanostructuring of hydrogel scaffolds used in tissue engineering aims to provide an ability to control cellular morphogenesis through defined cellematrix interactions. Toward this objective, we developed a method that alters the molecular network structure of biosynthetic hydrogel scaffolds made from crosslinked poly(ethylene glycol)-fibrinogen conjugates (PEG-fibrinogen, PF). The modifications were based on Pluronic Ò F127 micelles that were formed in the hydrogel precursor solution and that altered the hydrogel network assembly during photopolymerization crosslinking. Two variations of the cellencapsulating hydrogels (high and low crosslinking density) were prepared with three concentrations of Pluronic Ò F127 (3%, 7%, 10% w/v). Quantitative morphometrics were used to characterize fibroblast shape parameters (both transient and stable) in all hydrogels, and rheological characterizations were used to measure the elastic (storage) component of the complex shear modulus of these hydrogels. The morphometric data was then correlated to both the nanostructure and modulus of the hydrogels for day 1 and day 4 in culture. These correlations revealed that structural features imparted by the Pluronic Ò F127 micelles were able to reverse the normally strong correlations found between indicators of cell spreading and the hydrogel's mechanical properties. Therefore, the data supports the conclusion that nanostructural features in the encapsulating hydrogel culture environment can facilitate better cell spreading in a dense hydrogel milieu, simply by introducing imperfections into the network structure. This research also provides further prospective regarding biocompatible approaches toward making structural modifications to hydrogel scaffolds for the purpose of 3-D cell culture and tissue engineering.
Bioactive hydrogels made from step-growth derived PEG–peptide macromers
Biomaterials, 2010
Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400 Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG) m -acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500 kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by engineering the MMPsusceptibility of the hydrogels and the presence of functional immobilized adhesive ligands (CGRGDS vs. CGRGES peptide). The facile chemistry described and significant cellular responses observed suggest the usefulness of these materials in a variety of in vitro and ex vivo biologic investigations, and may aid in the design or refinement of material systems for a range of tissue engineering approaches.
Biomimetic Gradient Hydrogels for Tissue Engineering
During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering.
Cell Guidance by 3D-Gradients in Hydrogel Matrices: Importance for Biomedical Applications
Materials, 2009
Concentration gradients of soluble and matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for design of biomedical scaffolds and on implant surfaces. The focus of this review is to demonstrate the importance of gradient guidance for cells as it would be desirable to direct cell growth onto/into biomedical devices. Many studies have been described that illustrate the production and characterization of surface gradients, but three dimensional (3D)-gradients that direct cellular behavior are not well investigated. Hydrogels are considered as synthetic replacements for native extracellular matrices as they share key functions such as 2D-or 3D-solid support, fibrous structure, gas-and nutrition permeability and allow storage and release of biologically active molecules. Therefore this review focuses on current studies that try to implement soluble or covalently-attached gradients of growth factors, cytokines or adhesion sequences into 3D-hydrogel matrices in order to control cell growth, orientation and migration towards a target. Such gradient architectures are especially desirable for wound healing purposes, where defined cell populations need to be recruited from the blood stream and out of the adjacent tissue, in critical bone defects, for vascular implants or neuronal guidance structures where defined cell populations should be guided by appropriate signals to reach their proper positions or target tissues in order to accomplish functional repair.
Tissue Engineering Part A, 2012
The volume of tissue that can be engineered is limited by the extent to which vascularization can be stimulated within the scaffold. The ability of a scaffold to induce vascularization is highly dependent on its rate of degradation. We present a novel approach for engineering poly (ethylene glycol) diacrylate (PEGDA) hydrogels with controlled protease-mediated degradation independent of alterations in hydrogel mechanical and physical properties. Matrix metalloproteinase (MMP)-sensitive peptides containing one (SSite) or three (TriSite) proteolytic cleavage sites were engineered and conjugated to PEGDA macromers followed by photopolymerization to form PEGDA hydrogels with tethered cell adhesion ligands of YRGDS and with either single or multiple MMPsensitive peptide domains between cross links. These hydrogels were investigated as provisional matrices for inducing neovascularization, while maintaining the structural integrity of the hydrogel network. We show that hydrogels made from SSite and TriSite peptide-containing PEGDA macromers polymerized under the same conditions do not result in alterations in hydrogel swelling, mesh size, or compressive modulus, but result in statistically different hydrogel degradation times with TriSite gels degrading in 1-3 h compared to 2-4 days in SSite gels. In both polymer types, increases in the PEGDA concentration result in decreases in hydrogel swelling and mesh size, and increases in the compressive modulus and degradation time. Furthermore, TriSite gels support vessel invasion over a 0.3-3.6 kPa range of compressive modulus, while SSite gels do not support invasion in hydrogels above compressive modulus values of 0.4 kPa. In vitro data demonstrate that TriSite gels result in enhanced vessel invasion areas by sevenfold and depth of invasion by twofold compared to SSite gels by 3 weeks. This approach allows for controlled, localized, and cell-mediated matrix remodeling and can be tailored to tissues that may require more rapid regeneration and neovascularization.