Identification of New Key Genes and Their Association with Breast Cancer Occurrence and Poor Survival Using In Silico and In Vitro Methods (original) (raw)
Breast cancer is one of the most prevalent types of cancer diagnosed globally and continues to have a significant impact on the global number of cancer deaths. Despite all efforts of epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory. Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic targets in diseases. In the present study, we analyzed four datasets using R packages with accession number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential expressed genes (DEGs) were identified. Protein–protein interaction (PPI) network was constructed to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to determine the biological function of key genes. Expression profile of key genes was validated in MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and stage wise expression pattern of key genes...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact