Outlier Detection Based on Nelder-Mead Simplex Robust Kalman Filtering for Trustworthy Bridge Structural Health Monitoring (original) (raw)

Structural health monitoring (SHM) is vital for ensuring the service safety of aging bridges. As one of the most advanced sensing techniques, Global Navigation Satellite Systems (GNSS) could capture massive spatiotemporal information for effective bridge structural health monitoring (BSHM). Unfortunately, GNSS measurements often contain outliers due to various factors (e.g., severe weather conditions, multipath effects, etc.). All such outliers could jeopardize the accuracy and reliability of BSHM significantly. Previous studies have examined the feasibility of integrating the conventional multi-rate Kalman filter (MKF) with an adaptive algorithm in the data processing processes to ensure BSHM accuracy. However, frequent parameter adjustments are still needed in tedious data processing processes. This study proposed an outlier detection method using a Nelder-Mead simplex robust multi-rate Kalman filter (RMKF) for supporting trustworthy BSHM using GNSS and accelerometer. In the end, ...