parasitism, and stress in breeding pied flycatcher (Ficedula hypoleuca) females (original) (raw)

Abstract

There are two major interpretations of serum IgY concentration in wild birds. On the one hand, it has been considered an indication of susceptibility to stress and parasite infection. Therefore, immunoglobulin concentration is expected to change in response to variation in these factors owing to reproductive activities. On the other hand, it has been considered a measure of immune capacity. We measured the IgY level and the lymphocyte proportion at the beginning of incubation and at the end of the nestling period in female pied flycatchers, Ficedula hypoleuca (Pallas, 1764). We assessed the immune response to phytohaemagglutinin (PHA) at the latter stage. We found that the total IgY level remained constant throughout the season. Initially, it was positively associated with the PHA response, lymphocyte proportion, intensity of infection by Haemoproteus spp., and concentration of stress protein HSP70 in peripheral blood. These variables explained nearly 80% of the variation in IgY concentration. In the final phase, only the PHA response was correlated with the IgY level. We discuss the hypothetical mechanisms underlying these associations and the need to control for parasite infection and physiological stress in ecological studies including measurements of immunoglobulin concentration. Résumé : Il y a deux façons principales d'interpréter la concentration d'IgY dans le sérum des oiseaux sauvages. D'abord, elle peut être considérée comme un indice de la susceptibilité au stress at à l'infection par les parasites. Ainsi, la concentration d'immunoglobuline doit changer, croit-on, en réaction à ces facteurs au cours des activités de reproduction. En second lieu, on a suggéré qu'elle pouvait être une mesure de la capacité immunitaire. Nous avons mesuré les concentrations d'IgY, ainsi que les proportions des lymphocytes, chez des gobe-mouches noirs, Ficedula hypoleuca (Pallas, 1764) femelles au début de l'incubation et à la fin de la nidification. À cette dernière période, nous avons évalué leur réaction immunitaire à la phytohémagglutinine (PHA). Les concentrations d'IgY restent constantes au cours de la saison. Dans la phase initiale, elles sont en corrélation positive avec la réaction à la PHA, les proportions de lymphocytes, l'intensité de l'infection à Haemoproteus spp. et à la concentration de la protéine du stress HSP70 dans le sang périphérique. Ces variables expliquent 80 % des variations de concentration d'IgY. Dans la phase finale, seule la réaction à la PHA est en corrélation avec la concentration d'IgY. Nous discutons des mécanismes présumés qui expliquent ces associations, ainsi que de l'importance de tenir compte des infections parasitaires et du stress physiologique dans les études écologiques, en particulier des dosages des concentrations d'immunoglobuline. [Traduit par la Rédaction] Morales et al. 1492

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (79)

  1. Alonso-Alvarez, C., and Tella, J.L. 2001. Effects of experimental food restriction and body-mass changes on avian T-cell medi- ated immune response. Can. J. Zool. 79: 101-105.
  2. Apanius, V. 1991. Blood parasitism, immunity and reproduction in the American kestrel, Falco sparverius L. Ph.D. thesis, Univer- sity of Pennsylvania, Philadelphia, Pa.
  3. Apanius, V. 1998. Stress and immune defence. Adv. Study Behav. 27: 133-153.
  4. Apanius, V., and Nisbet, I.C.T. 2003. Serum immunoglobulin Y levels in very old common terns Sterna hirundo. Exp. Gerontol. 38: 761-764.
  5. Atkinson, C.T., and Van Riper, C., III. 1991. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocyto- zoon, and Haemoproteus. In Bird-parasite interactions. Ecology, evolution and behaviour. Edited by J.E. Loye and M. Zuk. Ox- ford University Press, Oxford. pp. 19-48.
  6. Blount, J.D., Houston, D.C., Møller, A.P., and Wright, J. 2003. Do individual branches of immune defence correlate? A compara- tive case study of scavenging and non-scavenging birds. Oikos, 102: 340-350.
  7. Campbell, T.W. 1995. Avian hematology and cytology. Iowa State University Press, Ames, Iowa.
  8. Carey, C. 1996. Avian energetics and nutritional ecology. Chapman & Hall, New York.
  9. Christe, P., De Lope, F., Gonzalez, G., Saino, N., and Møller, A.P. 2001. The influence of environmental conditions on immune re- sponses, morphology and recapture probability of nestling house martins (Delichon urbica). Oecologia, 126: 333-338.
  10. Cocke, R., Moynihan, J.A., Cohen, N., Grota, L.J., and Ader, R. 1993. Exposure to conspecific alarm chemosignals alters im- mune responses in BALB/c mice. Brain Behav. Immun. 7: 36- 46.
  11. Deeming, D.C. 2002. Avian incubation: behaviour, environment, and evolution. Edited by D.C. Deeming. Oxford University Press, Oxford.
  12. Deerenberg, C., Apanius, V., Daan, S., and Bos, N. 1997. Repro- ductive effort decreases antibody responsiveness. Proc. R. Soc. Lond. B Biol. Sci. 264: 1021-1029.
  13. Dhabhar, F.S. 2003. Stress, leucocyte trafficking, and the augmen- tation of skin function. Ann. N.Y. Acad. Sci. 992: 205-217.
  14. Eeva, T., Tanhuanpää, S., Råbergh, C., Airaksinen, S., Nikinmaa, M., and Lehikoinen, E. 2000. Biomarkers and fluctuating asym- metry as indicators of pollution-induced stress in two hole- nesting passerines. Funct. Ecol. 14: 235-243.
  15. Fair, J.M., Hansen, E.S., and Ricklefs, R.E. 1999. Proc. R. Soc. Lond. B Biol. Sci. 266: 1735-1742.
  16. Feder, M.E., and Hofmann, G.E. 1999. Heat-shock proteins, mo- lecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282.
  17. Ginn, H.B., and Melville, D.S. 1983. Moult in birds. BTO Guide 19. BTO, Tring.
  18. Godfrey, R.D., Jr., Fedynich, A.M., and Pence, D.B. 1987. Quanti- fication of hematozoa in blood smears. J. Wildl. Dis. 23: 558- 565. Gonzalez, G., Sorci, G., Møller, A.P., Ninni, P., Haussy, C., and De Lope, F. 1999. Immunocompetence and condition-dependent sexual advertisement in male house sparrows (Passer domesticus). J. Anim. Ecol. 68: 1225-1234.
  19. Goto, N., Kodama, H., Okada, K., and Fujimoto, Y. 1978. Suppres- sion of phytohemagglutinin skin response in thymectomised chickens. Poult. Sci. 57: 246-250.
  20. Gustafsson, L., Nordling, D., Andersson, M.S., Sheldon, B.C., and Qvarnström, A. 1994. Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346: 323-331.
  21. Hawkey, C.M., and Dennett, T.B. 1989. Atlas de hematología veterinaria comparada. Grass Ediciones S.A., Barcelona.
  22. Heller, E.D., Leitner, G., Friedman, A., Uni, Z., Gutman, M., and Cahaner, A. 1992. Immunological parameters in meat-type chicken lines divergently selected by antibody response to Esch- erichia coli vaccination. Vet. Immunol. Immunopathol. 34: 159- 172. Hollmén, T., Franson, J.C., Hario, M., Sankari, S., Kilpi, M., and Lindström, K. 2001. Use of serum biochemistry to evaluate nutritional status and health of incubating common eiders (Somateria mollissima) in Finland. Physiol. Biochem. Zool. 74: 333-342.
  23. Hõrak, P., Ots, I., and Murumägi, A. 1998. Haematological health state indices of reproducing Great Tits: a response to brood size manipulation. Funct. Ecol. 12: 750-756.
  24. Ilmonen, P., Taarna, T., and Hasselquist, D. 2000. Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc. R. Soc. Lond. B Biol. Sci. 267: 665-670.
  25. Johnsen, T.S., and Zuk, M. 1999. Parasites and tradeoffs in the im- mune response of female red jungle fowl. Oikos, 86: 487-492.
  26. Kaufmann, S.H.E. 1990. Heat shock proteins and the immune re- sponse. Immunol. Today, 11: 129-135.
  27. Klasing, K.C., and Leshchinsky, T.V. 1999. Functions, costs, and benefits of the immune system during development. In Proceed- ings of the 22nd International Ornithological Congress, Durban, South Africa, 16-22 August 1998. Edited by N.J. Adams and R.H. Slotow. BirdLife South Africa, Johannesburg, South Af- rica. pp. 2817-2835.
  28. Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55: 1151-1191.
  29. Lochmiller, R.L., and Deerenberg, C. 2000. Trade-offs in evolu- tionary immunology: just what is the cost of immunity? Oikos, 88: 87-98.
  30. Lochmiller, R.L., Vestey, M.R., and Boren, J.C. 1993. Relationship between protein nutritional status and immunocompetence in northern bobwhite chicks. Auk, 110: 503-510.
  31. Lundberg, A., and Alatalo, R.V. 1992. The Pied Flycatcher. Poyser, London.
  32. Martin, T.E., Møller, A.P., Merino, S., and Clobert, J. 2001. Does clutch size evolve in response to parasites and immunocom- petence? Proc. Natl. Acad. Sci. U.S.A. 98: 2071-2076.
  33. Martínez, J., Tomás, G., Merino, S., Arriero, E., and Moreno, J. 2003. Detection of serum immunoglobulins in wild birds by di- rect ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct. Ecol. 17: 700-706.
  34. Merino, S., Potti, J., and Fargallo, J.A. 1997. Blood parasites of some passerine birds from central Spain. J. Wildl. Dis. 33: 638- 641.
  35. Merino, S., Martínez, J., Barbosa, A., Møller, A.P., De Lope, F., Pérez, J., and Rodríguez-Caabeiro, F. 1998a. Increase in a heat- shock protein from blood cells in response of nestling house martins (Delichon urbica) to parasitism: an experimental ap- proach. Oecologia, 116: 343-347.
  36. Merino, S., Moreno, J., Potti, J., De León, A., and Rodríguez, R. 1998b. Nest ectoparasites and maternal effort in Pied Fly- catchers. Biol. Conserv. Fauna, 102: 200-205.
  37. Merino, S., Martínez, J., Møller, A.P., Sanabria, L., De Lope, F., Pérez, J., and Rodríguez-Caabeiro, F. 1999. Phytohaemagglu- tinin injection assay and physiological stress in nestling house martins. Anim. Behav. 58: 219-222.
  38. Merino, S., Martínez, J., Møller, A.P., Barbosa, A., De Lope, F., and Rodríguez-Caabeiro, F. 2002. Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience, 9: 300-305.
  39. Møller, A.P., Christe, P., Erritzøe, J., and Mavarez, J. 1998. Condi- tion, disease and immune defence. Oikos, 83: 301-306.
  40. Møller, A.P., Merino, S., Brown, C.R., and Robertson, R.J. 2001. Immune defence and host sociality: a comparative study of swallows and martins. Am. Nat. 158: 136-145. Can. J. Zool. Vol. 82, 2004
  41. Monaghan, P., and Nager, R.G. 1997. Why don't birds lay more eggs? Trends Ecol. Evol. 12: 270-274.
  42. Moreno, J., Sanz, J.J., and Arriero, E. 1999. Reproductive effort and T-lymphocyte cell-mediated immunocompetence in female pied flycatchers. Proc. R. Soc. Lond. B Biol. Sci. 266: 1105- 1109.
  43. Moreno, J., Sanz, J.J., Merino, S., and Arriero, E. 2001. Daily en- ergy expenditure and cell-mediated immunity in pied flycatchers while feeding nestlings: interaction with moult. Oecologia, 129: 492-497.
  44. Moreno, J., Merino, S., Martínez, J., Sanz, J.J., and Arriero, E. 2002. Heterophil/lymphocyte ratios and heat-shock protein lev- els are related to growth in nestling birds. Ecoscience, 9: 434- 439.
  45. Nilsson, J.-Å., and Råberg, L. 2001. The resting metabolic cost of egg laying and nestling feeding in great tits. Oecologia, 128: 187-192.
  46. Norris, K., and Evans, M.R. 2000. Ecological immunology: life history trade-offs and immune defence in birds. Behav. Ecol. 11: 19-26.
  47. Ots, I., and Hõrak, P. 1998. Health impact of blood parasites in breeding great tits. Oecologia, 116: 441-448.
  48. Parmentier, H.K., Schrama, J.W., Meijer, F., and Nieuwland, M.G.B. 1993. Cutaneous hypersensitivity responses in chickens divergently selected for antibody responses to sheep red blood cells. Poult. Sci. 72: 1679-1692.
  49. Pruett, S.B. 2003. Stress and the immune system. Pathophysiology, 9: 133-153.
  50. Råberg, L., Nilsson, J.-Å., Ilmonen, P., Stjernman, M., and Hasselquist, D. 2000. The cost of an immune response: vaccina- tion reduces parental effort. Ecol. Lett. 3: 382-386.
  51. Roitt, I., Brostoff, J., and Male, D. 2001. Immunology. 6th ed. Mosby-Harcourt Publishers Ltd., London.
  52. Saino, N., Bolzern, A.M., and Møller, A.P. 1997. Immunocom- petence, ornamentation, and viability of male barn swallows (Hirundo rustica). Proc. Natl. Acad. Sci. U.S.A. 66: 827-836.
  53. Saino, N., Stradi, R., Ninni, P., Pini, E., and Møller, A.P. 1999. Carotenoid plasma concentration, immune profile, and plumage ornamentation of male barn swallows (Hirundo rustica). Am. Nat. 154: 441-448.
  54. Saino, N., Incagli, M., Martinelli, R., Ambrosini, R., and Møller, A.P. 2001a. Immunity, growth and begging behaviour of nest- ling barn swallows Hirundo rustica in relation to hatching order. J. Avian Biol. 32: 263-270.
  55. Saino, N., Martinelli, R., and Møller, A.P. 2001b. Immunoglobulin plasma concentration in relation to egg laying and mate orna- mentation of female barn swallows (Hirundo rustica). J. Evol. Biol. 14: 95-109.
  56. Sanz, J.J. 1995. Environmental restrictions on reproduction in the pied flycatcher Ficedula hypoleuca. Ardea, 83: 421-430.
  57. Sanz, J.J., and Moreno, J. 2000. Delayed senescence in a southern population of the pied flycatcher (Ficedula hypoleuca). Ecoscience, 7: 25-31.
  58. Sanz, J.J., Moreno, J., Arriero, E., and Merino, S. 2002. Reproduc- tive effort and blood parasites of breeding pied flycatchers: the need to control for interannual variation and initial health state. Oikos, 96: 299-306.
  59. Sapolsky, R.M. 1992. Neuroendocrinology of the stress response. In Behavioral endocrinology. Edited by J.B. Becker, S.M. Breedlove, and D. Crews. MIT Press, Cambridge, Mass. pp. 287-324.
  60. Schmid-Hempel, P. 2003. Variation in immune defence as a ques- tion of evolutionary ecology. Proc. R. Soc. Lond. B Biol. Sci. 270: 357-366.
  61. Schmid-Hempel, P., and Ebert, D. 2003. On the evolutionary ecol- ogy of specific immune defence. Trends Ecol. Evol. 18: 27-32.
  62. Sheldon, B.C., and Verhulst, S. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11: 317-321.
  63. Smits, J.E., Bortolotti, G.R., and Tella, J.L. 1999. Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct. Ecol. 13: 567-572.
  64. Soler, J.J., de Neve, L., Perez-Contreras, T., Soler, M., and Sorci, G. 2003. Trade-off between immunocompetence and growth in magpies: an experimental study. Proc. R. Soc. Lond. B Biol. Sci. 270: 241-248.
  65. Sorci, G., Soler, J.J., and Møller, A.P. 1997. Reduced immunocom- petence of nestlings in replacement clutches of the European magpie (Pica pica). Proc. R. Soc. Lond. B Biol. Sci. 264: 1593- 1598.
  66. Sørensen, J.G., Kristensen, T.N., and Loeschcke, V. 2003. The evo- lutionary and ecological role of heat shock proteins. Ecol. Lett. 6: 1025-1037.
  67. Srivastava, P. 2002. Interaction of heat shock proteins with pep- tides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20: 395-425.
  68. StatSoft Inc. 2001. STATISTICA ® for Windows. Version 6.0 [com- puter program].
  69. Svensson, L. 1984. Identification guide to European passerines. Ugga, Stockholm.
  70. Szép, T., and Møller, A.P. 1999. Cost of parasitism and host im- mune defence in the sand martin Riparia riparia: a role for parent-offspring conflict? Oecologia, 119: 9-15.
  71. Tella, J.L., Scheuerlein, A., and Ricklefs, R.E. 2002. Is cell- mediated immunity related to the evolution of life-history strate- gies in birds? Proc. R. Soc. Lond. B Biol. Sci. 269: 1059-1066.
  72. Wakelin, D., and Apanius, V. 1997. Immune defence: genetic con- trol. Host-parasite evolution: general principles and avian mod- els. Edited by D.H. Clayton and J. Moore. Oxford University Press, Oxford. pp. 30-58.
  73. Ward, S. 1996. Energy expenditure of female barn swallows Hirundo rustica during egg formation. Physiol. Zool. 69: 930- 951.
  74. Weatherhead, P.J., and Bennett, G.F. 1991. Ecology of red-winged blackbird parasitism by hematozoa. Can. J. Zool. 69: 2352- 2359.
  75. Westneat, D.F., and Birkhead, T.R. 1998. Alternative hypotheses linking the immune system and mate choice for good genes. Proc. R. Soc. Lond. B Biol. Sci. 265: 1065-1073.
  76. Westneat, D.F., Hasselquist, D., and Wingfield, J.C. 2003. Tests of association between the humoral immune response of red- winged blackbirds (Agelaius phoeniceus) and male plumage, testosterone, or reproductive success. Behav. Ecol. Sociobiol. 53: 315-323.
  77. Wood, P.G., Karol, M.H., Kusnecov, A.W., and Rabin, B.S. 1993. Enhancement of antigen-specific humoral and cell-mediated immunity by electric footshock stress in rats. Brain Behav. Immunol. 7: 121-134.
  78. Zuk, M., and Johnsen, T.S. 1998. Seasonal changes in the relation- ship between ornamentation and immune response in red jungle fowl. Proc. R. Soc. Lond. B Biol. Sci. 265: 1631-1635.
  79. Zuk, M., and Stoehr, A.M. 2002. Immune defence and host life history. Am. Nat. 160: S9-S22.