The Delta Cooperative Model: a Dynamic and Innovative Team-Work Activity to Develop Research Skills in Microbiology (original) (raw)
Related papers
Cell Biology Education, 2007
As research faculty with expertise in the area of host-pathogen interactions (HPI), we used a research group model to effect our professional development as scientific educators. We have established a working hypothesis: The implementation of a curriculum that forms bridges between our seven HPI courses allows our students to achieve deep and meaningful learning of HPI concepts. Working collaboratively, we identified common learning goals, and we chose two microorganisms to serve as anchors for student learning. We instituted variations of published active-learning methods to engage students in research-oriented learning. In parallel, we are developing an assessment tool. The value of this work is in the development of a teaching model that successfully allowed faculty who already work collaboratively in the research area of HPI to apply a "research group approach" to further scientific teaching initiatives at a research university. We achieved results that could not be accomplished by even the most dedicated instructor working in isolation.
An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory
Cell Biology Education, 2009
Investigative-and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences.
Journal of Microbiology Biology Education Jmbe, 2013
Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.
2003
We used team-based learning to improve comprehension and critical thinking of students in an undergraduate microbial metabolism-physiology course. The course used well-known bacterial pathways to highlight themes of energy conservation and biodegradation. Prior to the introduction of team-based learning, student recall of this information was poor and students had difficulty extrapolating information to new organisms. Initially, individual and group quizzes were added to promote problem-solving and critical-thinking skills. This significantly improved student attitudes about the amount of information they learned and whether the instructor promoted critical thinking. However, retention of the material as judged by final examination scores was still poor. In the next year, two challenging projects were added to the course to complement the above themes: (i) postulating a pathway for the metabolism of a substrate by a bacterium, and (ii) modifying the current model for anaerobic sulfate reduction by incorporating recent genetic information. The inclusion of the team projects significantly improved final examination scores compared to the previous year without team projects. Overall, team-based learning with challenging projects improved the students' comprehension and retention of information, critical thinking, and attitudes about the course and focused student-instructor interactions on learning rather than grades.
Expanding your research team: learning gains when a laboratory partners with a classroom
BioScience
Classroom research experiences can provide outstanding learning opportunities for undergraduate students while also benefiting faculty research programs. However, these courses often require more work than traditional lecture-based courses, potentially discouraging faculty from taking on the challenge. Here, we propose one solution. We describe a research-based course designed and implemented by multiple members of a research team. The students in this course measured insects for an evolutionary genetics experiment while participating in classroom-based discussions, readings, and presentations focused on the nature of science. The benefits of the course were three-fold. First, students reported strong positive gains in understanding the nature of science and their attitudes towards science. Second, this course produced publishable data, benefiting faculty research. Third, members of the research team received valuable training in teaching, teamwork, and data management. If incorpora...
Strategies to Promote Effective Student Research Teams in Undergraduate Biology Labs
The American Biology Teacher, 2019
Biology labs often make use of student teams. However, some students resist working in teams, often based on poor experiences. Although instructors sometimes struggle with student teams, effective teams in biology labs are achievable. We increased student learning and satisfaction when working in research teams by (1) including in the syllabus a teamwork learning objective “to practice effective teamwork and team management, including modeling behaviors of inclusion and ethics, and using leadership skills to foster problem solving, team communication, conflict management, consensus building, and idea generation”; and (2) designing and implementing exercises that teach students the value of working in a team and how to be part of an effective student team (e.g., developing shared expectations, creating norms of behavior and team culture, and building awareness of the importance of team conflict and likely student responses to such conflict). We also used individual and team reflectio...
International journal of medical education, 2017
To examine whether introduction of Team-based Learning (TBL) improves student learning resulting in improved performance on final examination questions and decreased failures in an infectious diseases course. To improve mastery of course content, we designed an intervention, which provided weekly TBL exercises in study years 2 and 3 to review concepts presented during didactic lectures and laboratory exercises. The remaining course structure and content was essentially unchanged. All students taking the course (n=50 in year 1, n=64 in year 2, and n=72 in year 3) participated in this study. Student final examination performance and performance on individual final examination questions were collected and analyzed for changes in response to the study intervention. Addition of weekly TBL exercises improved student performance on the course final examination as demonstrated by a statistically significant increase in the distribution of correct answer percentages for questions in common ...
2001
Full engagement in science includes observation and asking questions, the development of a hypothesis, designing and conducting an appropriate experiment to test that hypothesis, data acquisition, appropriate analysis, revisiting initial questions, and dissemination of results. Here, I report on efforts to engage undergraduate students in all of these elements of science by integrating inquiry, investigation, and research in four intermediate biology courses for all majors. The project-based courses include Plant Ecology, Scanning Electron Microscopy, Molecular Genetics, and Physiological Ecology. Students conduct semester-long, experimental research projects and present their results at a public poster session on campus. Using computers, peripherals, and software funded by an award from the National Science Foundation, efforts were made to enhance the data acquisition, analysis, and presentation aspects of student research. The quality of the student research was improved, and student pride and ownership over the work increased. Students exhibited a greater understanding of science and quantitative analysis. One student project was published in a peer-reviewed journal, and many others were presented at regional and national meetings. The number of students taking elective courses in related areas, continuing research and senior honors projects, and applying and being accepted to related graduate programs significantly increased. Student poster sessions served to create a campuswide culture of science.
Journal of Microbiology & Biology Education
We designed a 16-week scaffolded student-scientist curriculum using inquiry-based research experiences integrated with professional development activities. This curriculum was implemented to teach undergraduate students enrolled in an introduction to biology course about enzyme activity, biochemical reactions, and alcohol fermentation. While working through the curriculum, students completed the entire scientific process by planning experiments, maintaining laboratory journals, analyzing and interpreting data, peer-reviewing research proposals, and producing and presenting a poster. The overall outcome was for students to complete a multiweek, collaborative, student-scientist project using Saccharomyces cerevisiae as the model organism. Student learning outcomes were evaluated using formative assessments (post-Research on the Integrated Science Curriculum survey and peer- and self-reflection worksheets) and summative assessments (pre/post assessments and assignment grades). Results ...