Decision trees for sex estimation based on mandibular measurements: A CT study (original) (raw)

Abstract

Jasna Paradiž, Determining the genetic vulnerability of plants due to ionizing radiation: a comprehensive analysis of the cytogenetic balance and responses of the Allium root meristem to various radiation doses .

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (180)

  1. A. E. Mascia et. all, 'Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases', JAMA Oncol. Published online October 23, 2022. doi:10.1001/jamaoncol.2022.5843
  2. Bourhis J., Sozzi W. J, Jorge PG, et al. Treatment of a first patient with FLASH radiotherapy. Radiother Oncol. 2019;139:18-22. doi:10.1016/j.radonc.2019.06.019
  3. Adam Bartnik et. all, "CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery", PHYSICAL REVIEW LETTERS 125, 044803 (2020). https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.125.044803
  4. N. Čėnas et al. Int. J. Molec. Sci. 22 (2021) 8534.
  5. A. Nemeikaitė-Čėnienė et al. Free Radic. Res. 55 (2021) 246-254.
  6. W.C. Stafford et al. Sci. Transl. Med. 10 (2018) eaaf7444.
  7. CD Spicer, C Jumeaux, B Gupta, MM Stevens, Chem Soc Rev., 2018, 47(10), 3574;
  8. ND Bogdan, M Matache, GD Roiban, C Dobrotă, VM Meier, DP Funeriu, Biomacromolecules, 2011, 12, 3400
  9. ND Bogdan, M Matache, VM Meier, C Dobrota, I Dumitru, GD Roiban, DP Funeriu, Chemistry -A European Journal, 2010, 16, 2170;
  10. CC Popescu, Marius C. Stoian, LM Cucos, AG Coman, A Radoi, A Paun, ND Hădade, A Gautier, CI Popescu, M Matache, RSC Adv., 2020, 10, 23931
  11. Bucher, D. B., Kufner, C. L., Schlueter, A., Carell, T. & Zinth, W. J. Am. Chem. Soc. 2016, 138, 1, 186-190
  12. Kubař, T. & Elstner, M. J. Phys. Chem. B. 2008, 112, 29, 8788-8798
  13. Nardi, A. N., Olivieri, A. & D'Abramo, M. J. Phys. Chem. B. 2022, 126, 27, 5017-5023
  14. Kumar, A. & Sevilla, M. D. J. Phys. Chem. B. 2011, 115, 117, 4990-5000
  15. Cauët, E. & Liévin, J. J. Phys. Chem. A. 2009, 113, 36, 9881-9890
  16. Conwell, E. M. & Basko, D. M. J. Am. Chem. Soc. 2001, 123, 46, 11441-11445
  17. Blancafort, L. & Voityuk, A. A. J. Phys. Chem. A. 2006, 110, 20, 6426-6432
  18. K. C. Chin, A. Gohel, H. I. Elim, W. Z. Chen, W. Ji, G. L. Chong, "Modified carbon nanotubes as broadband optical limiting nanomaterials", et al., J. Mater. Res., 21, 2758 (2006);
  19. Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, J. Q. Tian, "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes", Appl. Phys. Lett., 94, 021902 (2009);
  20. T. Xia, D. J Hagan, A. Dogariu, A. A. Said, E. W. Van Stryland, "Optimization of optical limiting devices based on excited-state absorption", Appl. Opt., 36 (18), 4110 (1997);
  21. H. Lundén, E. Glimsdal, M. Lindgren, C. Lopesa, "How to assess good candidate molecules for self-activated optical power limiting", Optical Engineering 57(3), 030802 (2018);
  22. D. Dini, M. J. F. Calvete, M. Hanack, "Nonlinear Optical Materials for the Smart Filtering of Optical Radiation", Chem. Rev. 116, 13043 (2016);
  23. A. Petris, I. C. Vasiliu, P. Gheorghe, A. M. Iordache, L. Ionel, L. Rusen, S. Iordache, M. Elisa, R. Trusca, D. Ulieru, S. Etemadi, R. Wendelbo, J. Yang, K. Thorshaug, "Graphene Oxide-Based Silico-Phosphate Composite Films for Optical Limiting of Ultrashort Near-Infrared Laser Pulses", Nanomaterials 10, 1638 (2020);
  24. A. Petris, P. Gheorghe, I. Rau, A. M. Manea-Saghin, F. Kajzar, "All-optical spatial phase modulation in films of dye-doped DNA biopolymer", European Polymer Journal 110, 130 (2019);
  25. M.-E. Barbinta-Patrascu, S. M. Iordache, "DNA -the fascinating biomacromolecule in optoelectronics and photonics applications", Journal of Optoelectronics and Advanced Materials, 24(11-12), 563 (2022);
  26. I. Dancus, V. I. Vlad, A. Petris, T. Bazaru Rujoiu, I. Rau, F. Kajzar, A. Meghea, A. Tane, "Z-scan and I-scan methods for characterization of DNA optical nonlinearities", Rom. Rep. Phys. 65 (3), 966 (2013);
  27. I. Dancus, V. I. Vlad, A. Petris, I. Rau, F. Kajzar, A. Meghea, A. Tane," Nonlinear optical properties of Rh610 sensitized DNA-CTMA characterized by Z-Scan ", Proc. SPIE 8882, 88820D (2013);
  28. A.M. Anton, I. Rau, F. Kajzar, A. M. Simion, C. Pirvu, N. Radu, C. Simion, "Natural materials with enhanced optical damage threshold", Optical Materials 86, 1 (2018).
  29. Ferlay J, Ervik M, Lam F… Bray F 2020 "Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer" https://gco.iarc.fr/today/home -21.12.2022.
  30. Gheewala T, Skwor T, Munirathinam G 2017 Oncotarget, 8(18), 30524.
  31. Zdrowowicz M, Chomicz-Mańka L, Butowska K, Spisz P, Falkiewicz K, Czaja A, Rak J 2022 In Practical Aspects of Computational Chemistry V Springer, Cham. (pp. 125-169)
  32. Spisz P, Zdrowowicz M, Makurat S, Kozak W, Skotnicki K, Bobrowski K, Rak J 2019 Molecules, 24(15), 2819.
  33. Ashwood B, Pollum M, Crespo-Hernández CE 2019 Photochem. Photobiol. 95(1), 33-58
  34. Limoli CL, Ward JF 1995 Mutagenesis, 10(5), 453-456.
  35. Visvader JE, Lindeman GJ 2008 Nat. Rev. Cancer, 8(10), 755-768.
  36. Knizhnik et al., PLoS One, 8, e55665, 2013; Quiros et al., Cell Cycle, 9, 168-178, 2010; He et al., Mol. Cancer Res., 17, 1129-41, 2019;
  37. Aasland et al., Cancer Res., 79, 99-113, 2019;
  38. Stratenwerth et al., Mol. Cancer Ther., 20, 1789-99, 2021;
  39. Beltzig et al., Cancers, 14, 2233,1-20, 2022;
  40. Kaina et al., Front. Oncol., 12, 98281, 2022. References:
  41. Zhu Jian Xin, Sheng Su Ling. Discussing the Ecological Quality of Bamboo Structural Building. J Building Science,2005,21(4):92-94
  42. Shen Zhi Rong, Ni Yang, Hu Zhiling.Material Test and Structural Analysis For "Germany and China-Together Cooperation" Bamboo Structure Exhibition Hall[J]. Structural Engineers, 2009,25(1):51-54.
  43. Yu Wen, Keke Xu, Jing Tang, Yushun Li, Research Status and Development trend of Steel-Bamboo Composite Structure. Advanced Materials Research Vol. 893 (2014) pp 716-719. doi:10.4028/www.scientific.net/AMR.893.716
  44. Shin FG, Yipp MW. Analysis of the mechanical properties and microstructure of bamboo-epoxy composites. J Mater Sci 1989; 3483:24.
  45. Okubo, K, Fujii, T, Yamamoto, Y. Development of bamboo-based polymer composites and their mechanical properties. Composites: Part A 35 (2004) 377-383.
  46. Varshal, G.M. Migration forms of fulvic acids and metals in natural waters, Dissertation. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, 1994.
  47. Makharadze, G.; Goliadze, N.; Khaiauri, A.; Makharadze, T.; Supatashvili, G. Fulvic and Humin Acids in Surface Waters of Georgia. High-performas Polymers for Engineering-based Composites. Apple Academic Press, Waretown, NJ USA, 2016, 167-179.
  48. Orsetti, S.; Marco-Brown, J.L.; Andrade, E.M.; Molina, F.V. Pb(II) Binding to Humic Substances: An Equilibrium and Spectroscopic Study.Environ. Sci. Technol. 2013, 47, 8325-8333.
  49. Makharadze, T. Measurement of Complex Formation Process of Lead (II) with Fulvic Acids at pH=8. Current Topics on Chemistry and Biochemistry Vol. 1, 2022, Pages 148-154.
  50. V. Nazabal, J.-L. Adam, Optical Materials: X 15 (2022) 100168
  51. Manjeet et al., Journal of Non-Crystalline Solids 588 (2022) 121613
  52. B. Tioua et al., Optics & Laser Technology 152 (2022) 108152
  53. A. Jha et al., Progress in Materials Science 57 (2012) 1426-1491
  54. S. Tanabe, C.R. Chimie 5 (2002) 815-824
  55. M. Shoaib et al., Journal of Luminescence 247 (2022) 118884
  56. W. Tang et al., Ceramics International 45 (2019) 16411-16416
  57. P. Cheng et al., Optical Materials 73 (2017) 102-110
  58. R.F. Falci et al., Journal of Luminescence 249 (2022) 119014
  59. J. Pisarska et al., Journal of Luminescence 215 (2019) 116625
  60. K. Kowalska et al. Materials 15 (2022) 3660
  61. Shang, M., Li, G., Yang, D., Kang, X., Peng, C. Lin, J. Luminescence properties of Mn2+-doped Li2ZnGeO4 as an efficient green phosphor for field-emission displays with high color purity, Dalton trans. 41 8861-8868 (2012) https://doi.org/10.1039/C2DT30670K
  62. Zhao F., Guo P., Li, G., Liao, F., Tian, S., Jing, X. Luminescent properties of Eu3+, Tb3+ or Bi3+ activated yttrium germanates, Mater. Res. Bull. 38, 931-940 (2003) https://doi.org/10.1016/S0025-5408(03)00086-2.
  63. Wan M., Wang, Y., Wang, X., Zhao, H., Hu, Z. The properties of a novel green long afterglow phosphors Zn2GeO4:Mn2+, Pr3+, Opt. Mater. 36 650-654 (2014) http://dx.doi.org/10.1016/j.optmat.2013.11.004
  64. Cao, R., Ceng, D., Yu, X., Guo, S., Wen, Y., Zheng, G. Synthesis and luminescence properties of novel deep red emitting phosphors Li2MgGeO4:Mn4+, Funct. Mater. Lett. 8, 150046 (2015) https://doi.org/10.1142/S1793604715500460
  65. Jin, Y., Hu, Y., Duan, H., Chen. L., Wang, X. The long persistent luminescence properties of phosphors: Li2ZnGeO4 and Li2ZnGeO4:Mn2+, RSC Adv 4, 11360-11366 (2004) https://doi.org/10.1039/C3RA47760F
  66. Uchino, T., Okutsu, D. Broadband laser emission from color centers inside MgO microcrystals, Phys. Rev. Letters 101 (2008) 117401. DOI: 10.1103/PhysRevLett.101.117401
  67. S.D.Baranovskii, P. Höhbusch,, A. V. Nenashev, A. V. Dvurechenskii, M. Gerhard, M. Koch, D. Hertel, K. Meerholz, and F. Gebhard, Adv. Funct. Mater., 32, 2201309 (2022).
  68. H. Masenda, L. M. Schneider, M. A. Aly, S. J. Machchhar, A. Usman, K. Meerholz, F. Gebhard, S. D. Baranovskii and M. Koch, Adv. Electron. Mater., 2100196 (2021).
  69. K. Ortstein, S. Hutsch, M. Hambsch, et al. Nature Mater. 20, 1407 (2021).
  70. S. D. Baranovskii, A. V. Nenashev, D. Hertel, F. Gebhard, and K. Meerholz, ACS Omega 7, 45741 (2022). References:
  71. C. M. Cepeda-Jiménez, J. M. Garcia-Infanta, M. Rozuelo et al. Scr. Mater. 61 (4), 407 (2009). https://doi.org/10.1016/j.scriptamat.2009.04.030
  72. R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials. 4th edn. Inc, John Wiley & Sons (2021).
  73. A.A. Sarkeeva, A.A. Kruglov, R.Ya. Lutfullin et al. Composites Part B. 187, 107838 (2020). https://doi.org/10.1016/j.compositesb.2020.107838
  74. X. He, Y. Dong, Y. Li, X. Wang. Int. J. Fatig. 106, 1 (2018). https://doi.org/10.1016/j.ijfatigue.2017.09.003
  75. A.A. Sarkeeva. Lett. Mater. 12 (4s), 499 (2022). https://doi.org/10.22226/2410-3535-2022-4-499-503 References:
  76. J.-L. Adam, X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications, Woodhead Publishing, 2013.
  77. S. Slang, L. Loghina, K. Palka, M. Vlcek, RSC Advances, 7(85), 53830-53838 (2017) References:
  78. S. A. Rodionov, M. A. Remnev, V. V. Klimov, "Refractive index sensor based on all-dielectric gradient metasurface", Sens. Bio-Sens. Res, 22 100263, February 2019.
  79. P. Damborsky, J. Švitel, J. Katrlik, "Optical biosensors", Essays Biochem., 60(1), pp. 91-100, June 2016.
  80. Qu, H., Fan, C., Chen, M. et al. "Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection", J Nanobiotechnol, 19, 403, December 2021.
  81. J. Hu, S. Bandyopadhyay, Y. Liu, L. Shao, "A Review on Metasurface: From Principle to Smart Metadevices", Front. Phys., 8, 586087, January 2021.
  82. Berlucchi G., Nuovi metodi per l'accertamento dello stato di coscienza. Suggerimenti dalla sperimentazione sugli animali. Convegno: Testamento biologico e libertà di coscienza. Accademia dei Lincei, Rome (Italy) 12-13 aprile 2012.
  83. Ogawa S. et al. PNAS USA, 87, 9868 (1990).
  84. Ter-Pogossian M. M. et al., Radiology 114, 89 (1975)
  85. Laureys S. et al., NeuroImage, 17; 732 (2002)
  86. Laureys S. et al., Brain, 123, 1589 (2000)
  87. de Jong B. M. et al., Clin. Neurology and Neurosurgery; 99; 213 (1997)
  88. Owen A. M. et al, Science, 313 (5792):1402 (2006)
  89. Monti M. M. et al., N. Engl. J. Med., 362, 579 (2010) References:
  90. Fleege, N. M. G., & Cobain, E. F. (2022).Best Practice & Research Clinical Obstetrics & Gynaecology.
  91. Hanna, K., Krzoska, E., Shaaban, A. M., Muirhead, D., Abu-Eid, R., & Speirs, V. (2022). British journal of cancer, 126(8), 1125-1139.
  92. Zhao, C., Wu, M., Zeng, N., Xiong, M., Hu, W., Lv, W., ... & Wu, Y. (2020). Journal of Experimental & Clinical Cancer Research, 39(1), 1-17.
  93. Fletcher, S. J., Sacca, P. A., Pistone-Creydt, M., Coló, F. A., Serra, M. F., Santino, F. E., ... & Pistone-Creydt, V. (2017).Journal of Experimental & Clinical Cancer Research, 36, 1-13.
  94. Debnath, K., Las Heras, K., Rivera, A., Lenzini, S., & Shin, J. W. (2023). Nature Reviews Materials, 1-13.
  95. H. Carter, L. Ferrucci, A. Kettermann, P. Landis, E. Wright, J. Epstein, B. Trock and J. Metter, "Detection of Life-Threatening Prostate Cancer With Prostate-Specific Antigen Velocity During a Window of Curability," Journal of the National Cancer Institute, vol. 98(21), pp. 1521-1527, 2006.
  96. A. Dash, B. Blasiak, B. Tomanek, P. Latta, and F. C. J. M. van Veggel, "Target-Specific Magnetic Resonance Imaging of Human Prostate Adenocarcinoma Using NaDyF4-NaGdF4 Core-Shell Nanoparticles", ACS Appl. Mater. Interfaces vol 13, no. 21, pp. 24345-24355, 2021
  97. Pötter, R,. et al., (2018). The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clinical and translational radiation oncology, 9, 48-60. References:
  98. Putra, O.D.; Uekusa, H Pharmaceutical Multicomponent Crystals: Structure, Design, and Properties. In: Sakamoto, M.; Uekusa, H. (eds) Advances in Organic Crystal Chemistry, Springer 2020, 153-184.
  99. Vioglio, P.C.; Chierotti, M.R.; Gobetto, R Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges, Advanced Drug Delivery Reviews 2017, 117, 86-110.
  100. Fitriani, L.; Firdaus, W.A.; Sidadang, W.; Rosaini, H.; Putra, O.D.; Oyama, H.; Uekusa, H.; Zaini, E. Improved Solubility and Dissolution Rate of Ketoprofen by the Formation of Multicomponent Crystals with Tromethamine, Crystals 2022, 12, 275.
  101. Kress, H.G.; Baltov, A.; Basiński, A.; Berghea, F.; Castellsague, J.; Codreanu, C.; Copaciu, E.; Giamberardino, M.A.; Hakl, M.; Hrazdira, L.; Kokavec, M.; Lejčko, J.; Nachtnebl, L.; Stančík, R.; Švec, A.; Tóth, T.; Vlaskovska, M. V.; Woroń, J. Acute pain: a multifaceted challenge -the role of nimesulide, Medical Research and Opinion 2016, 32(1), 23-36.
  102. Purcaru, S.O.; Ionescu, M.; Raneti, C.; Anuta, V.; Mircioiu, I.; Belu, I. Study of nimesulide release from solid pharmaceutical formulations in tween 80 solutions, Current Health Sciences Journal 2010, 36(1), 42-49. References:
  103. B. Bhujang et al., Journal of Physics: Conference Series 420, 012128 (2013).
  104. A. Gavron, Phys. Rev. C 21, 230 (1980).
  105. J. Wilczyński et al., Phys. Rev. Lett. 45, 606 (1980). References:
  106. Braga, D.; Casali, L.; Grepioni, F. Int. J. Mol. Sci. 2022, 23, 9013.
  107. Zhou, Q.; Tan, Z.; Yang, D. et al. Crystals 2021, 11, 343.
  108. Grobelny, P.J.; Mukherjee, A.; Desiraju, G.R. CrystEngComm. 2011, 13, 4358-4364.
  109. Cheney, M.L.; Weyna, D.R.; Zaworotko, M.J. et al. J. Pharm. Sci. 2011, 100(6), 2172-2181.
  110. Denny, W.A. Curr. Med. Chem. 2002, 9(18), 1655-1665.
  111. Kong, B.S.; Im, S.J.; Lee, Y.J. et al. PLoS One. 2016, 11(3):e0149394.
  112. Wang, M., Gao, M., Zheng, Q.H. Bioorg Med Chem Lett. 2013, 23(2), 524-7.
  113. Kang, C.W.; Han, Y.E.; Kim, J. et al. Sci Rep. 2017, 7(1), 14192.
  114. Park, S.; Kim, D.S.; Kang, S. Eur J Nutr. 2011, 50(2), 107-118.
  115. Wu, M.; Cudjoe, O.; Shen J. et al. Front Microbiol. 2020, 11, 589604. References: 1 Zimbrick et al. "Studies on the Chemical Basis of Cellular Radiosensitization by 5-bromouracil Substitution in DNA" International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 1969, 16(6), 505-523.
  116. T.J. Wasowicz, B. Pranszke, Eur. Phys. J. D 70 (2016) 175
  117. T.J. Wasowicz, B. Pranszke, J. Phys. Chem. A 119 (2015) 581
  118. T.J. Wasowicz, B. Pranszke, J. Phys. Chem. A 120 (2016) 964
  119. Slobodan D. Radiochromic film dosimetry: Past, present and future. 2011; 27, 122-134.
  120. Hall A.V. The topochemical polymerisation of radiation -sensitive 10,12-pentacosadiynoic acid as different multicomponent solid forms. 2020. Durham theses, Durham University.
  121. S. V. Gudkov, N. Y. Shilyagina, V. A. Vodeneev, and A. V. Zvyagin, "Targeted radionuclide therapy of human tumors," Int. J. Mol. Sci., vol. 17, no. 1, Jan. 2016, doi: 10.3390/IJMS17010033.
  122. R. W. Howell, "Advancements in the use of Auger electrons in science and medicine during the period 2015-2019," Int. J. Radiat. Biol., vol. 99, no. 1, pp. 2-27, 2023, doi: 10.1080/09553002.2020.1831706.
  123. A. Ku, V. J. Facca, Z. Cai, and R. M. Reilly, "Auger electrons for cancer therapy -a review," EJNMMI Radiopharm. Chem., vol. 4, no. 1, 2019, doi: 10.1186/s41181-019-0075-2.
  124. D. Filosofov, E. Kurakina, and V. Radchenko, "Potent candidates for Targeted Auger Therapy: Production and radiochemical considerations," Nucl. Med. Biol., vol. 94-95, pp. 1-19, 2021, doi: 10.1016/j.nucmedbio.2020.12.001.
  125. I. Ruiz-García et al., Measurement, 199 (2022) 0263-2241.
  126. I. Ruiz-García et al., Med. Phys. 48 (2021) 5440-5447.
  127. I.S. Amiri et al., Results in Physics, 14 (2019) 2211-3797.
  128. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Adv. Mater., 22, 4467, https://doi.org/10.1002/adma.201000732
  129. Olenych, I.B., Monastyrskii, L.S., Aksimentyeva, O.I., Orovcík, L., & Salamakha, M.Y. (2018). Mol. Cryst. Liq. Cryst., 673, 32, https://doi.org/10.1080/15421406.2019.1578491
  130. Olenych I. B., Aksimentyeva O. I., Horbenko Yu. Yu., Tsizh B. R. (2021). Appl. Nanosci., Doi: 10.1007/s13204-021-01698-7.
  131. I. Ruiz-García et al. Med. Phys. 48 (2021) 5440-5447.
  132. F. Salvat, J.M. Fernández-Varea and J. Sempau, "Penelope 2018: a code system for Monte Carlo simulation of electron and photon transport", Nuclear Energy Agency, Barcelona 2018.
  133. F. Salvat and J. M. Quesada, Nucl. Ins. Meth. Phys. Res. B 475 (2020) 49.
  134. G. Batistone et al., The FLUKA code, Annals of Nuclear Energy 82 (2015) 10.
  135. M. A. Carvajal et al., Phys. Med. Biol. 54 (2009) 6263-6276
  136. G. F. Knoll, "Radiation detection and measurement", John Wiley and Sons, New York, 2000, 3 rd edition.
  137. A. J. H. Donné, «The European roadmap towards fusion electricity», Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 377, n. o 2141, p. 20170432, feb. 2019, doi: 10.1098/rsta.2017.0432.
  138. «The IFMIF-DONES project: preliminary engineering design IOPscience». https://iopscience.iop.org/article/10.1088/1741-4326/aad91f/meta (accedido 16 de febrero de 2023).
  139. 2 Prikhodko et al., Med. Physics (2021) Vol 48, DOI: https://doi.org/10.1002/mp.14893
  140. Pousibet-Garrido et al., Sens. Actuator A Phys (2023) Vol 354, https://doi.org/10.1016/j.sna.2023.114295
  141. Martínez-García et al., Sens. Actuator A Phys (2016) 67-75, DOI: 10.1016/j.sna.2016.11.007
  142. M.S. Martínez-García et al., Response to ionizing radiation of different biased and stacked pMOS structures, Sensors and Actuators A: Physical, vol. 252, pp. 67-76, 2016.
  143. M.A. Carvajal et al., Thermal compensation technique using the parasitic diode for DMOS transistors, Sensors and Actuators A: Physical, vol. 249, pp. 249-255, 2016.
  144. S.Rizzo, E.Tomarchio, Virtual point detector: Application to coincidence-summing corrections in gamma-ray spectrometry, Appl. Radiat. Isotopes 68 (2010), 1448-1450.
  145. C.W. Reich, Balraj Singh, NDS, 111 (2010) 1211; Evaluated Nuclear Data File (ENDF), https://www-nds.iaea.org.
  146. M. K. Jurkowski, D. Glowienka, T. J. Wasowicz, ThreSpect -a Program for the Determination of the Appearance Energies of Neutral and Ionized Species, Rom. J. Phys. (2023) -submitted
  147. M. K. Jurkowski, D. Glowienka, T. J. Wasowicz, ThreSpect a program for the determination of the Appearance Energies [Data set]. Gdansk University of Technology (2023). DOI:10.34808/hwc6-be20
  148. R. Edwards et al., Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography, Applied Physics Letters 80 (12), 2129 (2002).
  149. A. Dopp et al., A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator, Nucl. Instr. and Meth.in Phys.Res., 516 (2016).
  150. Y.C. Wu et al., Towards high-energy, high-resolution computed tomography via a laser driven micro- spot gamma-ray source, Scientific Reports, 8:15888 (2018).
  151. Alkhorayef, M., Al-Mohammed, H.I., Mayhoub, F.H. et al., 2020. Staff radiation dose and estimated risk in an interventional radiology department. Radiation Physics and Chemistry, 108999. doi:10.1016/j.radphyschem.2020.108999
  152. Euratom, 2014. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom https://energy.ec.europa.eu/celex-32013l0059-en-txt\_en
  153. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4), 4-239.
  154. UNSCEAR 2008. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation: SOURCES. Report to the General Assembly Scientific Annexes A and B. Volume I, 303-320.
  155. References: A. Rump, P. Ostheim, S. Eder, C. Hermann, M. Abend, M. Port. Preparing for a "dirty bomb" attack: the optimum mix of medicinal countermeasure resources. Military Medical Research, 2021, 8:3. References:
  156. X.J. Bao, S.Q.Guo, P.H. Chen. Phys.Rev C 2022, 105, 024610.
  157. M. Enmark, J. Haggstrom, Jorgen Samuelsson, Torgny Fornstedt. Journal of Chromatography A, 2022, 1671, 462999
  158. Türler A., Gregorich K.E. "Experimental Techniques" in The Chemistry of Superheavy Elements, Eds. Schädel M., Shaughnessy D., Springer-Verlag Berlin Heidelberg, 2014.
  159. Dmitriev S.N. et al. Mendeleev Commun., 2014, 24, 253.
  160. Aksenov N.V. et al. Eur. Phys. J. A, 2017, 53, 158. Simulation of the radiation exposure of microorganisms living in submarine hydrothermal systems using GATE and Geant4-DNA Monte Carlo simulation tools
  161. Giovanna-Rosa Fois, Dariana Llanes Vega, Alexis Pereda, Luca Terray, Patrick Chardon, Sofia Kolovi, Vincent Breton, Lydia Maigne Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont Ferrand, France https://doi.org/10.21175/rad.abstr.book.2023.39.11
  162. S. Witkiewicz-Lukaszek, J. Winiecki, P. Michalska, S. Nizhankovskiy, Y. Zorenko Basic characteristics of dose distributions of photons beam for radiotherapeutic applications using YAG:Ce crystal detectors Materials 2022 (15) 7861
  163. P. Bilski, A. Mrozik, M. Kłosowski, W. Gieszczyk, Y. Zorenko, K. Kamada, A. Yoshikawa, O. Sidletskiy New efficient OSL detectors based on the crystals of Ce 3+ doped Gd3Al5-xGaxO12 garnet Mat Sci&Eng B 273 (2021) 115448
  164. P. Bilski, A. Mrozik, M. Kłosowski, S. Nizankovskiy, T. Zorenko, Y. Zorenko Infrared stimulated luminescence of Ce doped YAG crystals Materials 15 (2022) 8288
  165. S. Witkiewicz-Lukaszek, V. Gorbenko, T. Zorenko, Y. Syrotych, J. Mares, M. Nikl, O. Sidletskiy, P. Bilski, A.Yoshikawa, Y.Zorenko Composite detectors based on films and crystals of garnet compounds Materials 15 (2022) 1249
  166. M.S. Akselrod. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry. AIP Conf. Proc. 1345 (2011) 274-302.
  167. E.G. Yukihara and S.W.S. McKeever. Optically stimulated luminescence (OSL) dosimetry medicine. Phys. Med. Biol. 53 (2008) R35.
  168. C. Anderson, RL and OSL Dosimetry and its medical application, AIP Conf. Proc., 2010.
  169. K. Tanderup, S. Beddar, C.E. Andersen, G. A. V. Kertzscher Schwencke, G. A. V., & Cygler, J. E.. In vivo dosimetry in brachytherapy. Medical Physics, (2013) 40 (7) 070902.
  170. S. Witkiewicz-Lukaszek, V. Gorbenko, T. Zorenko, Y. Syrotych, J. Mares, M. Nikl, O. Sidletskiy, P. Bilski, A. Yoshikawa, Y. Zorenko. Materials 15 (2022) 1249.
  171. N.V. Bhagavan, C.-E. Ha, Essentials of Medical Biochemistry, 2 nd Edition, Elsevier, 2015.
  172. T.P. Andrejević, B. Warżajtis, B.Đ. Glišić, S. Vojnovic, M. Mojicevic, N.Lj. Stevanović, J. Nikodinovic- Runic, U. Rychlewska, M.I. Djuran, J. Inorg. Biochem. 208 (2020) 111089.
  173. Smith, Alison. (2017). Metal nanomaterials for optical anti-counterfeit labels. Journal of Materials Chemistry C. 5. 3207 -3215.
  174. Smith, A.F., Patton, P. and Skrabalak, S.E., Plasmonic Nanoparticles as a Physically Unclonable Function for Responsive Anti-Counterfeit Nanofingerprints. Adv. Funct. Mater., 26: 1315-1321, (2016) References:
  175. Evlampieva N. P., Lebedev V. T., Szhogina A. A. / / Bulletin of St. Petersburg State University. Physics and chemistry. 2018. Vol. 5 (63), pp. 86-96.
  176. Krylov V. V., Karyakin O. B., Drozdovsky B. Ya. / / Oncourology. 2006. Vol. 1. pp. 61-68.
  177. Maslennikova D. A., Slesarev S. M., Slesareva E. V., Kharin A. I., Stolbovskaya O. V., Khokhlova A.V., Pogodina E. S., Zazhoma D. A., Vorsina S. N., Saenko Yu. V.// Ulyanovsk medico-biological Journal. 2017. Vol. 2. pp. 135-143.
  178. Sedov V. P. //Russian Journal of Applied Chemistry. 2020. Vol. 93. pp. 527-539. References:
  179. Joglekar H., Vahia M.N., Sule A.; Oldest sky-chart with Supernova record; Puratattva (2011), 41, 207-211
  180. Campanella R.; Arte e scienza: lo sviluppo del pensiero nell'intuizione dell'artista e nel rigore dello scienziato in "Fare scienza oggi" Cimmino et al. ed. Morlacchi Editore U.P., Perugia, 2018, pp.207-213