Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate (original) (raw)

A Multiscale Model of the Neonatal Circulatory System Following Hybrid Norwood Palliation

Hypoplastic left heart syndrome (HLHS) is a complex cardiac malformation in neonates suffering from congenital heart disease and occurs in 1 per 5000 births [1]. HLHS is uniformly fatal within the first hours or days after birth as the severely malformed anatomies of the left ventricle, mitral and aortic valves, and ascending aorta are not compatible with life. The regularly implemented treatment, the Norwood operation, is a complex open heart procedure that attempts to establish univentricular circulation by removing the atrial septum (communicating the right and left ventricle), reconstructing the malformed aortic arch, and connecting the main pulmonary artery into the reconstructed arch to allow direct perfusion from the right ventricle into the systemic circulation. A relatively new treatment being utilized, the Hybrid Norwood procedure, involves a less invasive strategy to establish univentricular circulation that avoids a cardiopulmonary bypass (heart-lung machine), deliberate cardiac arrest, and circulatory arrest of the patient during the procedure. The resulting systemic-pulmonary circulation is unconventional; blood is pumped simultaneously and in parallel to the systemic and pulmonary arteries after the procedure. Cardiac surgeons are deeply interested in understanding the global and local hemodynamics of this anatomical configuration. To this end, a multiscale model of the entire circulatory system was developed utilizing an electrical circuit model analogy for the peripheral or distal circulation coupled with a 3D Computational Fluid Dynamics (CFD) model to understand the local hemodynamics. The electrical circuit model is mainly a closed loop circuit comprised of RLC compartments that model the viscous drag, flow inertia, and compliance of the different arterial and venous beds in the body. A system of 32 first-order differential equations is formulated and solved for the electrical circuit model using a fourth-order adaptive Runge-Kutta solver. The output pressure and flow waveforms obtained from the electric circuit model are imposed as boundary conditions on the 3D CFD model. The CFD model domain is a representative HLHS anatomy of an infant after undergoing the Hybrid Norwood procedure and is comprised of the neo-aorta, pulmonary roots, aortic arch with branching arteries, and pulmonary arteries. The flow field is solved over several cardiac cycles using an implicit-unsteady RANS equation solver with the K-Epsilon turbulence model.

Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock–Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics

European Journal of Cardio-Thoracic Surgery, 2011

Objective: The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics. Method: Based on anatomic details obtained from echocardiographic assessment and angiographic studies, two three-dimensional computer models of post-Norwood physiology were developed. The finite-element method was applied for computational hemodynamic simulations. Norwood physiology with RV-PA 5-mm conduit and Blalock-Taussig shunt (BTS) 3.5-mm shunt were compared. Right ventricle work, wall stress, flow velocity, shear rate stress, energy loss and turbulence eddy dissipation were analyzed in both models. Results: The total work of the right ventricle after Norwood procedure with the 5-mm RV-PA conduit was lower in comparison to the 3.5-mm BTS while establishing an identical systemic blood flow. The Qp/Qs ratio was higher in the BTS group. Conclusions: Hemodynamic performance after Norwood with the RV-PA conduit is more effective than after Norwood with BTS. Computer simulations of complicated hemodynamics after the Norwood procedure could be helpful in establishing optimal post-Norwood physiology.

Patient-Specific Multi-Scale Model Analysis of Hemodynamics Following the Hybrid Norwood Procedure for Hypoplastic Left Heart Syndrome: Effects of Reverse Blalock–Taussig Shunt Diameter

Cardiovascular Engineering and Technology, 2018

Introduction-The hybrid Norwood (HN) is a relatively new first stage palliative procedure for neonates with hypoplastic left heart syndrome, in which a sustainable uni-ventricular circulation is established in a less invasive manner than with the standard Norwood procedure. A computational multiscale model of the circulation following the HN procedure was used to obtain detailed hemodynamics. Implementation of a reverse-BT shunt (RBTS), a synthetic bypass from the main pulmonary to the innominate artery placed to counteract aortic arch stenosis, and its effects on local and global hemodynamics were studied. Methods-A post-op patient-derived anatomy of the HN procedure was utilized with varying degrees of distal arch obstruction, or stenosis, (nominal and 90% lumenal area reduction) and varying RBTS diameters (3.0, 3.5, 4.0 mm). A closed lumped parameter model (LPM) for the proximal and peripheral circulations was coupled to a 3D computational fluid dynamics (CFD) model in order to obtain converged flow fields for analysis. Results-CFD analyses of patient-derived anatomic configurations demonstrated consistent trends of vascular bed perfusion, vorticity, oscillatory shear index and wall shear stress levels. In the models with severe stenosis, implementation of the RBTS resulted in a restoration of arterial perfusion to near-nominal levels regardless of the shunt diameter. Shunt flow velocity, vorticity, and overall wall shear stress levels decreased with increasing shunt diameter, while shunt flow and systemic oxygen delivery increased with increased shunt diameter. In the absence of distal arch stenosis, large (4.0 mm) grafts may risk thrombosis due to low velocities and flow patterns. Conclusion-Among the three graft sizes, the best option seems to be the 3.5 mm RBTS which provides a more organized flow similar to that of the 3.0 mm configuration with lower levels of wall shear stress. As such, in the setting of this study and for comparable HN physiologies our results suggest that: (1) the 4.0 mm shunt is a generous shunt diameter choice that may be problematic particularly when implemented prophylactically in the absence of stenosis, and (2) the 3.5 mm shunt may be a more suitable alternative since it exhibits more favorable hemodynamics at lower levels of wall shear stress.

A Mathematical Model of Transitional Circulation Toward Biventricular Repair in Hypoplastic Left Heart Syndrome

Anesthesia & Analgesia, 2012

BACKGROUND: Although the traditional surgical approach for left hypoplastic heart syndrome is to perform staged, palliative procedures as a single ventricle lesion, certain anatomical subsets of patients are candidates for a 2-ventricle repair either as a primary or as a staged procedure. The pulmonary blood flow (Q P)/systemic blood flow (Q S) range necessary to optimize systemic oxygen delivery (DO 2) and systemic venous oxygen saturation has been delineated for patients undergoing conventional interventions as a single ventricle physiology where the left ventricle is assumed to make no contribution to systemic cardiac output. However, in the transitional circulations created during staging to a 2-ventricle repair, the left ventricle does contribute to cardiac output. The Q P /Q S at which systemic DO 2 and systemic venous oxygen saturation are optimized in the latter circulations has not yet been evaluated. Using computer modeling, we investigated parameters to optimize systemic oxygen delivery. METHODS: We designed model circulations after both modified stage I operation and modified bidirectional Glenn shunt with Sano shunt, which are transitional circulations created during staging to a 2-ventricle repair. Mathematical equations were derived to describe DO 2 in both models. Using a computer and an Excel spreadsheet, we used the equations to examine the relationships between DO 2 and arterial oxygen saturation (SaO 2), venous oxygen saturation (SvO 2), SaO 2 Ϫ SvO 2 , Q P /Q S , and the oxygen excess factor SaO 2 /(SaO 2 Ϫ SvO 2). RESULTS: In both circulations, SaO 2 or SvO 2 alone does not accurately predict DO 2 or Q P /Q S. The relationships between these variables are further altered by the degree of systemic cardiac output supplied by the left ventricle. To the contrary, DO 2 demonstrates the linear relationship with the oxygen excess factor SaO 2 /(SaO 2 Ϫ SvO 2) irrespective of the degree of systemic cardiac output supplied by the left ventricle. CONCLUSIONS: Commonly obtained clinical values such as SaO 2 and SvO 2 alone are not accurate assessments of DO 2 or Q P /Q S. Therefore, these cannot be used in isolation to guide perioperative therapy.

Modeling single ventricle physiology: review of engineering tools to study first stage palliation of hypoplastic left heart syndrome

Frontiers in pediatrics, 2013

First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of v...

Characterization of Post-Operative Hemodynamics Following the Norwood Procedure Using Population Data and Multi-Scale Modeling

Frontiers in Physiology, 2021

Children with hypoplastic left heart syndrome (HLHS) must undergo multiple surgical stages to reconstruct the anatomy to a sustainable single ventricle system. Stage I palliation, or the Norwood procedure, provides circulation to both pulmonary and systemic vasculature. The aorta is reconstructed and attached to the right ventricle and a fraction of systemic flow is redirected to the pulmonary arteries (PAs) through a systemic-to-PA shunt. Despite abundant hemodynamic data available 4–5 months after Norwood palliation, data is very scarce immediately following stage I. This data is critical in determining post-operative success. In this work, we combined population data and computational fluid dynamics (CFD) to characterize hemodynamics immediately following stage I (post-stage I) and prior to stage II palliation (pre-stage II). A patient-specific model was constructed as a baseline geometry, which was then scaled to reflect population-based morphological data at both time-points. P...