Supplementary Figure 5 from NOTCH Signaling Is Required for Formation and Self-Renewal of Tumor-Initiating Cells and for Repression of Secretory Cell Differentiation in Colon Cancer (original) (raw)

The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis

Journal of Cell Science, 2006

Secretion of Wnts by adipose cells has an important role in the control of murine adipogenesis. We present the first evidence that a Wnt antagonist, Dickkopf 1 (Dkk1), is secreted by human preadipocytes and promotes adipogenesis. DKK1 mRNA increases six hours after onset of human adipogenesis and this is followed by an increase in Dkk1 protein. With further differentiation, the mRNA and protein levels progressively decline such that they are undetectable in mature adipocytes. The transient induction in DKK1 correlates with downregulation of cytoplasmic and nuclear β-catenin levels, this being a surrogate marker of canonical Wnt signalling, and Wnt/β-catenin transcriptional activity. In addition, constitutive expression of Dkk1 in 3T3-L1 preadipocytes promotes their differentiation, further supporting the functional significance of increased Dkk1 levels during human adipogenesis. Concomitant downregulation of the Dkk1 receptors LRP5 and LRP6 is likely to potentiate the ability of Dkk...

Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1

Neurobiology of Disease, 2006

Expression of the Wnt antagonist Dickkopf-1 (DKK1) is induced during neurodegenerative processes associated with Alzheimer's Disease and brain ischemia. However, little is known about DKK1-mediated effects on neurons. We now describe that, in cultured neurons, DKK1 is able to inhibit canonical Wnt signaling, as assessed by TCF reporter assay and analysis of β-catenin levels, and to elicit cell death associated with loss of BCL-2 expression, induction of BAX, and TAU hyperphosphorylation. Local infusion of DKK1 in rats caused neuronal cell death and astrocytosis in the CA1 region of the hippocampus and death of cholinergic neurons in the nucleus basalis magnocellularis. Both effects were reversed by systemic administration of lithium ions, which rescue the Wnt pathway by inhibiting glycogen synthase kinase-3β. The demonstration that DKK1 inhibits Wnt signaling in neurons and causes neuronal death supports the hypothesis that inhibition of the canonical Wnt pathway contributes to the pathophysiology of neurodegenerative disorders.

Active vaccination with Dickkopf-1 induces protective and therapeutic antitumor immunity in murine multiple myeloma

Blood, 2011

Dickkopf-1 (DKK1), broadly expressed in myeloma cells but highly restricted in normal tissues, together with its functional roles as an osteoblast formation inhibitor, may be an ideal target for immunotherapy in myeloma. Our previous studies have shown that DKK1 (peptide)–specific CTLs can effectively lyse primary myeloma cells in vitro. The goal of this study was to examine whether DKK1 can be used as a tumor vaccine to elicit DKK1-specific immunity that can control myeloma growth or even eradicate established myeloma in vivo. We used DKK1-DNA vaccine in the murine MOPC-21 myeloma model, and the results clearly showed that active vaccination using the DKK1 vaccine not only was able to protect mice from developing myeloma, but it was also therapeutic against established myeloma. Furthermore, the addition of CpG as an adjuvant, or injection of B7H1-blocking or OX40-agonist Abs, further enhanced the therapeutic effects of the vaccine. Mechanistic studies revealed that DKK1 vaccine eli...

R-Spondin Family Members Regulate the Wnt Pathway by a Common Mechanism

Molecular Biology of the Cell, 2008

The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.

Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

British journal of cancer, 2008

Although mutation of APC or CTNNB1 (beta-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, an...

Canonical WNT signaling during kidney development

AJP: Renal Physiology, 2007

The canonical WNT signaling pathway plays a crucial role in patterning of the embryo during development, but little is known about the specific developmental events, which are under WNT control. To understand more about how the WNT pathway orchestrates mammalian organogenesis, we studied the canonical -catenin mediated WNT signaling pathway in kidneys of mice bearing a -catenin responsive TCF/ Gal reporter transgene. In metanephric kidney, intense canonical WNT signaling was evident in epithelia of the branching ureteric bud and in nephrogenic mesenchyme during its transition into renal tubules. WNT signaling activity is rapidly downregulated in maturing nephrons and becomes undetectable in post-natal kidney.

Mesenchymal–epithelial interactions in the skin

The Journal of Cell Biology, 2004

We investigated whether or not the topographic regulation of melanocyte differentiation is determined by mesenchymal–epithelial interactions via fibroblast-derived factors. The melanocyte density in palmoplantar human skin (i.e., skin on the palms and the soles) is five times lower than that found in nonpalmoplantar sites. Palmoplantar fibroblasts significantly suppressed the growth and pigmentation of melanocytes compared with nonpalmoplantar fibroblasts. Using cDNA microarray analysis, fibroblasts derived from palmoplantar skin expressed high levels of dickkopf 1 (DKK1; an inhibitor of the canonical Wnt signaling pathway), whereas nonpalmoplantar fibroblasts expressed higher levels of DKK3. Transfection studies revealed that DKK1 decreased melanocyte function, probably through β-catenin–mediated regulation of microphthalmia-associated transcription factor activity, which in turn modulates the growth and differentiation of melanocytes. Thus, our results provide a basis to explain w...

Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain

Retrovirology, 2010

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators.

Wnt-independent activation of beta-catenin mediated by a Dkk1-Fz5 fusion protein

Biochemical and biophysical research communications, 2005

An XWnt8-Fz5 fusion protein synergizes with LRP6 to potently activate beta-catenin-dependent signaling. Here, we generated a fusion in which XWnt8 was fused to the N-terminus of LRP6 and show it synergizes with both Fz4 and Fz5 to potently transactivate beta-catenin-dependent Wnt signaling. Based on this, we hypothesized that the main function of Wnt is to nucleate the formation of a physical complex between LRP6 and a Frizzled. Dkk1, but not the related Dkk3, binds LRP6 and inhibits canonical Wnt signaling by blocking the interaction of Wnt and LRP6. Therefore, we reasoned that a covalent fusion of Dkk1 to Fz5 (Dkk1-Fz5) would mimic Wnt ligand by nucleating the formation of a complex containing Fz5 and LRP6, while Dkk3 (Dkk3-Fz5) would not. We found that Dkk1-Fz5, but not Dkk3-Fz5, potently synergized with LRP6 to activate signaling in a dishevelled-dependent manner.