Using SWCNTs to Enhancing the Performance of P3HT:PCBM-Based Organic Solar Cells (original) (raw)

The study shows how the solution processed bulk-heterojunction solar cells can exhibit better performance on the basis of a low-bandgap polymer combined with a fullerene derivative. Co-solution is used to blend the dopant single-walled carbon nanotubes (SWCNTs) with poly (3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at 0% to 1% concentrations. We use Carrier mobility measures to show that an increase in doping concentration causes an increase in hole conductivity and mobility. This was shown in the XRD studies and established through the absorbance spectra that shows the specific 600 nm shoulder. The study demonstrates that it is possible to improve the open circuit voltage and short circuit current of the relevant solar cells by doping at a concentration of 0.5%, which leads to increased power conversion efficiencies. The improvement in performance is explained with respect to trap filling because of the higher carrier density and lower recombination that is associated with better mobility.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.