Human Fetal Liver: AnIn VitroModel of Erythropoiesis (original) (raw)

Human Fetal Liver: An In Vitro Model of Erythropoiesis

Stem Cells International, 2011

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34 + cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34 + ) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10-15% cloning efficiency for adult CD34 + cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.

Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells

Cell journal, 2015

There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease. In this experimental study, we examined the erythroid differentiation potential of normal Bombay hiPSCs (B-hiPSCs) and compared results to human embryonic stem cell (hESC) lines. Because of lacking ABO blood group expression in B-hiPSCs, it has been highlighted as a valuable source to produce any cell type in vitro. Similar to hESC lines, hemangioblasts derived from B-hiPSCs expressed approximately 9% KDR(+)CD31(+) and approximately 5% CD31(+)CD34(+). In semisolid media, iPSC and hESC-derived hemangioblast formed mixed type of hematopoietic colony. In mixed colonies, erythroid progenitors were capable...

Generation and characterization of erythroid cells from human embryonic stem cells and induced pluripotent stem cells: an overview

Stem cells international, 2011

Because of the imbalance in the supply and demand of red blood cells (RBCs), especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

Large-scale production of embryonic red blood cells from human embryonic stem cells

Experimental Hematology, 2006

Objective. To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Materials and Methods. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. Results. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no b-globin. Conclusions. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion. Ó

Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells

PLoS ONE, 2011

We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38-Using Liver Cells

2005

culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established a serum-free culture system to expand human primitive stem/progenitors cells. Non-enriched cord blood CD34 + cells were cultured on a monolayer of mouse primary fetal liver cells in the presence of trombopoietin, flt3/flk2 ligand, and/or stem cell factor, IL-6 and IL-3 under serum-free conditions. After 1 or 2 weeks of culture, cells were examined for clonogenic progenitors and percentage of CD34 + CD38cells. In the presence of trombopoietin, flt3/flk2 ligand, and stem cell factor, fetal liver cells supported expansion of CD34 + cells more than 10 to 20 fold. In addition, colony forming unit-cell assay was expanded more than 5-and 10-fold after 1 and 2 weeks of culture, respectively. These results strongly suggest that fetal liver cells may be a suitable feeder layer for expansion of hematopoietic progenitors from umbilical cord blood in vitro. Iran. Biomed. J. 9 (3): 111-116, 2005

Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo

Nature Biotechnology, 2002

New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34 + progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.

Differentiation of human induced pluripotent stem cells into erythroid cells

Stem Cell Research & Therapy

During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of t...

Humanized Culture Medium for Clinical-Grade Generation of Erythroid Cells from Umbilical Cord Blood CD34+ Cells

2021

Purpose: Transfusion of red blood cells (RBCs) is a supportive and common treatment in surgical care, trauma, and anemia. However, in vivo production of RBC seems to be a suitable alternative for blood transfusions due to the limitation of blood resources, the possibility of disease transmission, immune reactions, and the presence of rare blood groups. Cell cultures require serum-free or culture media supplemented with highly expensive animal serum, which can transmit xenoviruses. Platelet lysate (PL) can be considered as a suitable alternative containing a high level of growth factors and a low production cost. Methods: Three-step culture media supplemented with PL or fetal bovine serum (FBS) were used for proliferation and differentiation of CD34+ umbilical cord blood stem cells to erythrocytes in co-culture with bone marrow mesenchymal stem cells (BM-MSCs). The cells were cultivated for 15 days and cell proliferation and expansion were assessed using cell counts at different days...