The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder (original) (raw)

Abstract

To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO 2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO 2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO 2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (−9.8 RT unit) and adsorption isotherms (−10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO 2 surface apart from hydrophobic interactions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735.
  2. A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 33 (2000) 269.
  3. H.M. Lin, T.Y. Hsu, C.Y. Tung, C.M. Hsu, Nanostruct. Mater. 6 (1995) 1001.
  4. S.Y. Huang, L. Kavan, I. Exnar, M. Graetzel, J. Electrochem. Soc. 142 (1995) L142.
  5. S.J. Kim, D.E. Mckean, J. Mater. Sci. Lett. 17 (1998) 141.
  6. G.E. Morris, W.A. Skinner, P.G. Self, R.S.C. Smart, Colloids Surf. A: Physicochem. Eng. Aspects 155 (1999) 27.
  7. S. Panush, Opalescent automotive paint compositions containing microtita- nium dioxide pigment, European Patent EP0270472 B1 (1992).
  8. M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki, N. Hioka, J. Hazard. Mater. 162 (2009) 448.
  9. C. Chawengkijwanich, Y. Hayata, Int. J. Food Microbiol. 163 (2008) 288.
  10. J.K. Plischke, S.C. De La Veaux, S.R. Frerichs, L. Witt, C. Normand, Apparatus for making metal oxide nano powder, United States Patent, Patent No. US7,465,430 B2 (2008).
  11. Y. Liu, Z. Yu, S. Zhou, L. Wu, J. Dispers. Sci. Technol. 27 (2006) 983.
  12. H.B. Fadhel, C. Frances, A. Mamourian, Powder Technol. 105 (1999) 362.
  13. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258 (1992) 1474.
  14. N.S. Scriciftci, A.J. Heeger, Synth. Met. 70 (1995) 1349.
  15. S. Farrokhpay, Adv. Colloid Interface Sci. 151 (2009) 24.
  16. S. Chander, Colloids Surf. A: Physicochem. Eng. Aspects 133 (1998) 143.
  17. M. Iijima, M. Kobayakawa, M. Yamazaki, Y. Ohta, H. Kamiya, J. Am. Chem. Soc. 131 (2009) 16342.
  18. B. Carr, P. Hole, A. Malloy, P. Nelson, M. Wright, J. Smith, Eur. J. Parenter. Pharm. Sci. 14 (2009) 45.
  19. B.P. Singh, L. Besra, S. Bhattacharjee, Colloids Surf. A: Physicochem. Eng. Aspects 204 (2002) 175.
  20. B.P. Singh, L. Besra, S. Bhattacharjee, J. Nanopart. Res. 9 (2007) 797.
  21. L. Besra, D.K. Sengupta, S.K. Roy, P. Ay, Int. J. Miner. Process. 66 (2002) 203.
  22. R. Ramachandra Rao, H.N. Roopa, T.S. Kannan, Ceram. Int. 25 (1999) 223.
  23. B.P. Singh, S. Gaydardzhiev, P. Ay, J. Dispers. Sci. Technol. 27 (2006) 91.
  24. K. Sato, J.G. Li, H. Kamiyo, T. Ishigaki, J. Am. Ceram. Soc. 91 (2008) 2481.
  25. Y.C. Shi, Y.S. Wu, J.G. Li, G. Li, J. Dispers. Sci. Technol. 24 (2003) 739.
  26. B.P. Singh, J. Jena, L. Besra, S. Bhattacharjee, J. Nanopart. Res. 9 (2007) 797.
  27. B.P. Singh, L. Besra, S. Bhattacharjee, D.K. Sengupta, Ceram. Int. 30 (2004) 939.
  28. R.K. Rath, S. Subramanian, T. Pradeep, J. Colloid Interface Sci. 229 (2000) 82.
  29. B.P. Singh, Fuel 78 (1999) 501.
  30. G. Peschel, Adsorption from Solutions of Non-Electrolytes. Von J.J. Kipling. Aca- demic Press, London/New York, 1966, 80 (2006) 765.
  31. J. Cesarana III, J.I.A. Aksay, A. Bleier, J. Am. Ceram. Soc. 71 (1988) 250.
  32. G. Kramer, P. Somasundaran, Langmuir 18 (2002) 9357.
  33. G.J. Fleer, J. Lyklema, Adsorption of polymers, in: Parfitt, C.H. Rochester (Eds.), Adsorption from Solution at the Solid/Liquid Interface, Academic Press, New York, 1983, pp. 153-220.
  34. H.A. Van der Schee, J. Lyklema, J. Phys. Chem. 88 (1984) 6661.
  35. J. Papenhuijzen, H.A. Van Der Schee, G.J. Fleer, J. Colloid Interface Sci. 104 (1985) 540.
  36. M.A.C. Stuart, G.J. Fleer, J. Lyklema, W. Norde, J.M.H.M. Scheutjens, Adv. Colloid Interface Sci. 34 (1991) 477.