Prediction of the Solubility of Medium-Sized Pharmaceutical Compounds Using a Temperature-Dependent NRTL-SAC Model (original) (raw)

Abstract

In this work, the NRTL-SAC and the Pharma UNIFAC models are evaluated with respect to the capability of prediction of solid-liquid equilibria of pharmaceutical compounds in organic solvents. The original NRTL-SAC model is extended through the introduction of temperaturedependent binary interaction parameters, and the two versions of the model are parametrized using VLE data. The performance of the NRTL-SAC models for correlation and prediction of the 2 solubility of eight medium-sized flexible pharmaceutical or pharmaceutically similar molecules in multiple pure, organic solvents is examined: risperidone, fenofibrate, fenoxycarb, tolbutamide, meglumine, butyl paraben, butamben and salicylamide. The performance of the Pharma UNIFAC model is evaluated using data for six of these compounds. In general, it is found that introducing a dependence on temperature to the binary interaction parameters of the NRTL-SAC model can improve its capability for modeling and prediction of the solubility of active pharmaceutical ingredients. For prediction of solubility data the Pharma UNIFAC model generally performs below the two NRTL-SAC models. Averaged over all evaluated systems where the solubility was predicted with each method, the root mean squared logarithmic error in predicted mole fraction solubility obtained for Pharma UNIFAC (30 systems) and for the original and the modified temperature-dependent forms of the NRTL-SAC model (29 systems) are 1.64, 1.17 and 1.09, respectively. Comparing only those systems for which all models were evaluated (18 systems), the RMSLE values are 1.42, 1.06 and 0.87, respectively.

Figures (14)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (37)

  1. Prausnitz, J. M.; Lichtenthaler, N. R.; Gomez de Azevedo, E. Molecular thermodynamics of fluid- phase equilibria, 3rd ed.; Prentice-Hall PTR: Upper Saddle River, New Jersey, 1999.
  2. Nordström, F. L.; Rasmuson, Å. C. Determination of the Activity of a Molecular Solute in Saturated Solution. J. Chem. Thermodyn. 2008, 40, 1684.
  3. Gracin, S.; Brinck, T.; Rasmuson, Å. C. Prediction of Solubility of Solid Organic Compounds in Solvents by UNIFAC. Ind. Eng. Chem. Res. 2002, 41, 5114.
  4. Neau, S. H.; Bhandarkar, S. V.; Hellmuth, E. W. Differential Molar Heat Capacities to Test Ideal Solubility Estimations. Pharm. Res. 1997, 14, 601.
  5. Pappa, G. D.; Voutsas, E. C.; Magoulas, K.; Tassios, D. P. Estimation of the Differential Molar Heat Capacities of Organic Compounds at Their Melting Point. Ind. Eng. Chem. Res. 2005, 44, 3799.
  6. Neau, S. H.; Flynn, G. L. Solid and Liquid Heat Capacities of n-Alkyl Para-aminobenzoates Near the Melting Point. Pharm. Res. 1990, 7, 1157.
  7. Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127.
  8. Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AlChE J. 1975, 21, 116.
  9. Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AlChE J. 1968, 14, 135.
  10. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AlChE J. 1975, 21, 1086.
  11. Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224.
  12. Lin, S.-T.; Sandler, S. I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899.
  13. Chen, C.-C.; Song, Y. Solubility Modeling with a Nonrandom Two-Liquid Segment Activity Coefficient Model. Ind. Eng. Chem. Res. 2004, 43, 8354.
  14. Mirmehrabi, M.; Rohani, S.; Murthy, K.; Radatus, B. Solubility, Dissolution Rate and Phase Transition Studies of Ranitidine Hydrochloride Tautomeric Forms. Int. J. Pharm. 2004, 282, 73.
  15. Domanska, U.; Pobudkowska, A.; Pelczarska, A. Solubility of Sparingly Soluble Drug Derivatives of Anthranilic Acid. J. Phys. Chem. B 2011, 115, 2547.
  16. Mullins, E.; Liu, Y. A.; Ghaderi, A.; Fast, S. D. Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2008, 47, 1707.
  17. Diedrichs, A.; Gmehling, J. Solubility Calculation of Active Pharmaceutical Ingredients in Alkanes, Alcohols, Water and Their Mixtures Using Various Activity Coefficient Models. Ind. Eng. Chem. Res. 2010, 50, 1757.
  18. Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244.
  19. Ruether, F.; Sadowski, G. Modeling the Solubility of Pharmaceuticals in Pure Solvents and Solvent Mixtures for Drug Process Design. J. Pharm. Sci. 2009, 98, 4205.
  20. Spyriouni, T.; Krokidis, X.; Economou, I. G. Thermodynamics of Pharmaceuticals: Prediction of Solubility in Pure and Mixed Solvents with PC-SAFT. Fluid Phase Equilib. 2011, 302, 331.
  21. Mota, F. L.; Carneiro, A. P.; Queimada, A. J.; Pinho, S. P.; Macedo, E. A. Temperature and Solvent Effects in the Solubility of Some Pharmaceutical Compounds: Measurements and Modeling. Eur. J. Pharm. Sci. 2009, 37, 499.
  22. Tung, H. H.; Tabora, J.; Variankaval, N.; Bakken, D.; Chen, C. C. Prediction of Pharmaceutical Solubility via NRTL-SAC and COSMO-SAC. J. Pharm. Sci. 2008, 97, 1813.
  23. Sheikholeslamzadeh, E.; Rohani, S. Solubility Prediction of Pharmaceutical and Chemical Compounds in Pure and Mixed Solvents Using Predictive Models. Ind. Eng. Chem. Res. 2011, 51, 464.
  24. Haghtalab, A.; Yousefi Seyf, J. Vapor-Liquid and Solid-Liquid Modeling with a Universal Quasichemical Segment-Based Activity Coefficient Model. Ind. Eng. Chem. Res. 2015, 54, 8611.
  25. Mealey, D.; Svärd, M.; Rasmuson, Å. C. Thermodynamics of Risperidone and Solubility in Pure Organic Solvents. Fluid Phase Equilib. 2014, 375, 73.
  26. Watterson, S.; Hudson, S.; Svärd, M.; Rasmuson, Å. C. Thermodynamics of Fenofibrate and Solubility in Pure Organic Solvents. Fluid Phase Equilib. 2014, 367, 143.
  27. Kuhs, M.; Svärd, M.; Rasmuson, Å. C. Thermodynamics of Fenoxycarb in Solution. J. Chem. Thermodyn. 2013, 66, 50.
  28. Sun, X.-H.; Liu, Y.-F.; Tan, Z.-C.; Jia, Y.-Q.; Yang, J.-W.; Wang, M.-H. Heat Capacity and Enthalpy of Fusion of Fenoxycarb. Chin. J. Chem . 2005, 23, 501.
  29. Thirunahari, S.; Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Conformational polymorphism of tolbutamide: A structural, spectroscopic, and thermodynamic characterization of Burger's forms I-IV. J. Pharm. Sci. 2010, 99, 2975.
  30. Svärd, M.; Valavi, M.; Khamar, D.; Kuhs, M.; Rasmuson, Å. C. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents. J. Pharm. Sci. 2016, 105, 1901.
  31. Svärd, M.; Hjorth, T.; Bohlin, M.; Rasmuson, Å. C. Calorimetric Properties and Solubility in Five Pure Organic Solvents of N-Methyl-d-Glucamine (Meglumine). J. Chem. Eng. Data 2016, 61, 1199.
  32. Yang, H.; Thati, J.; Rasmuson, Å. C. Thermodynamics of Molecular Solids in Organic Solvents. J. Chem. Thermodyn. 2012, 48, 150.
  33. Nordström, F. L.; Rasmuson, Å. C. Solubility and Melting Properties of Salicylamide. J. Chem. Eng. Data 2006, 51, 1775.
  34. Renon, H.; Prausnitz, J. M. Estimation of Parameters for the NRTL Equation for Excess Gibbs Energies of Strongly Nonideal Liquid Mixtures. Ind. Eng. Chem. Proc. Des. Dev. 1969, 8, 413.
  35. Gmehling, J.; Onken, U.; Arlt, W.; Grenzheuser, P.; Weidlich, U.; Kolbe, B.; Rarey, J. Vapor-Liquid Equilibrium Data Collection; DECHEMA: Frankfurt, 1991 -2014.
  36. Yang, H.; Rasmuson, Å. C. Solubility of Butyl Paraben in Methanol, Ethanol, Propanol, Ethyl Acetate, Acetone, and Acetonitrile. J. Chem. Eng. Data 2010, 55, 5091.
  37. Weidlich, U.; Gmehling, J. A modified UNIFAC model. 1. Prediction of VLE, h E, and γ ∞ . Ind. Eng. Chem. Res. 1987, 26, 1372.