Classification of Phonocardiograms with Convolutional Neural Networks (original) (raw)
Related papers
Classification of Segmented Phonocardiograms by Convolutional Neural Networks
2019
One of the first causes of human deaths in recent years in our world is heart diseases or cardiovascular diseases. Phonocardiograms (PCG) and electrocardiograms (ECG) are usually used for the detection of heart diseases. Studies on cardiac signals focus especially on the classification of heart sounds. Naturally, researches generally try to increase accuracy of classification. For this purpose, many studies use for the segmentation of heart sounds into S1 and S2 segments by methods such as Shannon energy, discreet wavelet transform and Hilbert transform. In this study, two different heart sounds data in the PhysioNet Atraining data set such as normal, and abnormal are classified with convolutional neural networks. For this purpose, the S1 and S2 parts of the heart sounds were segmented by the resampled energy method. The images of Phonocardiograms which were obtained from S1 and S2 parts in the heart sounds were used for classification. The resized small images of phonocardiogram we...
Cardiac Arrhythmia Classification in Electrocardiogram Signals with Convolutional Neural Networks
Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM), 2023
Electrocardiography is a frequently used examination technique for heart disease diagnosis. Electrocardiography is essential in the clinical evaluation of patients who have heart disease. Through the electrocardiogram (ECG), medical doctors can identify whether the cardiac muscle dysfunctions presented by the patient have an inflammatory origin and early diagnosis of serious diseases that primarily affect the blood vessels and the brain. The basis of arrhythmia diagnosis is the identification of normal and abnormal heartbeats and their classification into different diagnoses based on ECG morphology. Heartbeats can be divided into five categories: non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is difficult to distinguish these heartbeats apart on the ECG as these signals are typically corrupted by outside noise. The objective of this study is to develop a classifier capable of classifying a patient's ECG signals for the detection of arrhythmia in clinical patients. We developed a convolutional neural network (CNN) to identify five categories of heartbeats in ECG signals. Our experiment was conducted with ECG signals obtained from a publicly available MIT-BIH database. The number of instances was even out to five classes of heartbeats. The proposed model achieved an accuracy of 99.33% and an F1-score of 99.44% in the classification of ventricular ectopic beats (VEB).
Heart Sounds Classification for a Medical Diagnostic Assistance
International Journal of Online and Biomedical Engineering (iJOE), 2019
In order to develop the assessment of phonocardiogram “PCG” signal for discrimination between two of people classes – individuals with heart disease and healthy one- we have adopted the database provided by "The PhysioNet/Computing in Cardilogy Challenge 2016", which contains records of heart sounds 'PCG '. This database is chosen in order to compare and validate our results with those already published. We subsequently extracted 20 features from each provided record. For classification, we used the Generalized Linear Model (GLM), and the Support Vector Machines (SVMs) with its different types of kernels (i.e.; Linear, polynomial and MLP). The best classification accuracy obtained was 88.25%, using the SVM classifier with an MLP kernel.
Deep convolutional neural network application to classify the ECG arrhythmia
Springer, 2020
The ECG signal is such a substantial means to reflect all the electrical activities of the cardiac system. Therefore, it is considered by the physician as the essential tools and materials to diagnose and treat heart diseases. To deal with different types of arrhythmia, the physician manually inspects the ECG heartbeat. Since there are tiny alternations in the amplitude, durations and therefore the morphology, the computer-based systems were needed to develop such solutions in order to help the physician to do their job. In this study, a novel tactic to automatically classify ten different arrhythmia types was developed depending on the deep learning theory. Consequently, the well-known convolutional neural network (CNN) approach was adopted to classify those different types of arrhythmia. The structure of the proposed model consists of 11 layers distributed as follows: four layers as convolution interchanged with other four layers of max pooling and finally three successfully connected layers. The experiment was conducted with the dataset which was downloaded from the Physionet in the Massachusetts Institute of Technology-Beth Israel Hospital database and then augmented to get sufficient and balanced dataset. To evaluate the performance of the proposed method and compare it with the previous algorithms, confusion matrix, sensitivity (SEN), specificity (SPE), precision (PRE), area under curve and receiver operating characteristic have been used and calculated. It has been found that performance from the proposed method is better than the existing methods based on CNN, and the accuracy is 99.84.
Iranian Journal of Medical Physics, 2019
Background: In recent years automated methods have been utilized for heart sound analysing as useful, low-cost, non-invasive diagnostic modality and especially as a choice for self-evaluation for at-risk patients. Recent studies have demonstrated the potential of Convolutional Neural Networks (CNNs) in distinguishing healthy and morbid heart sounds. Unfortunately the performance of CNNs is highly dependent to the filtering procedure in their convolutional layer. Materials and Methods: The aim of this study is improving performance of CNNs in heart sound classification by applying filter bank learning concept in their convolutional layer. To perform this plan, the filter bank is updated based on cross-entropy minimization rule to extract higher-level features from spectral characteristics of heart sound signal. The more deep level of the extracted features in parallel with their spectral nature lead to better discrimination between healthy and morbid heart sounds. Results: The propos...