PO-524 MT4-MMP, EGFR and Rb expressions are predictive biomarkers of response to erlotinib-palbociclib combination in TNBC (original) (raw)
Related papers
Journal of Translational Medicine, 2016
Background: Colorectal cancer (CRC) is the third leading cause of cancer mortality worldwide and is associated with high recurrence and mortality, despite recent advancements in therapeutic strategies. MicroRNA (miR) deregulation is associated with CRC development and recurrence; therefore, miRs may be reliable biomarkers for detecting early relapse postoperatively. Methods: In this study ten candidates were identified using miR arrays: miR-7, miR-31, miR-93, miR-141, miR-195, miR-375, miR-429, miR-494, miR-650, and let-7b. Substantial differences were observed in their expression levels between early relapsed (recurrences within 12 months after surgery) and non-early relapsed CRC patients. The validation study, including 50 early relapsed and 54 non-early relapsed patients, confirmed miR expression alterations in cancer tissue samples. Results: Using a miR real-time quantitative polymerase chain reaction (RT-qPCR), we observed that expression levels of miR-93, miR-195, and let-7b were significantly decreased, whereas those of miR-7, miR-141 and miR-494 showed increases that were more significant in the CRC tissue samples from the early relapsed patients than in those from the non-early relapsed patients. Disease-free survival and overall survival were significantly worse in the high miR-7, miR-141, and miR-494 expression subgroups and the low miR-93 and miR-195 expression subgroups (all P < 0.05). A panel of 6 miRs (miR-7, miR-93, miR-195, miR-141, miR-494, and let-7b), at a cutoff value of 2 deregulated miRs, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 76.6 % and a specificity of 71.4 %. By combining this 6-miRs panel with 6 clinicopathologic factors, at a cutoff value of 4, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 89.4 % and a specificity of 88.9 %. Conclusions: This study showed that the developed miR panel has the potential to improve predicting early relapse in CRC patients.
PloS one, 2015
MicroRNAs (miRNA) are a group of short noncoding RNAs that regulate gene expression at the posttranscriptional level. It has been shown that microRNAs are independent predictors of outcome in patients with diffuse large B-cell lymphoma (DLBCL) treated with the drug combination R-CHOP. Based on the measured growth inhibition of 60 human cancer cell lines (NCI60) in the presence of doxorubicine, cyclophosphamide, vincristine and etoposide as well as the baseline microRNA expression of the 60 cell lines, a microRNA based response predictor to CHOP was developed. The response predictor consisting of 20 micro-RNAs was blindly validated in a cohort of 116 de novo DLBCL patients treated with R-CHOP or R-CHOEP as first line treatment. The predicted sensitivity based on diagnostic FFPE samples matched the clinical response, with decreasing sensitivity in poor responders (P = 0.03). When the International Prognostic Index (IPI) was included in the prediction analysis, the separation between responders and non-responders improved (P = 0.001). Thirteen patients developed relapse, and five patients predicted sensitive to their second and third line treatment survived a median 1194 days, while eight patients predicted not sensitive to their second and third line treatment survived a median 187 days (90% CI: 485 days versus 227 days). Among the latter group it was predicted that four would have been sensitive to another second line treatment than the one they received. The predictions were almost the same when diagnostic biopsies were used as when relapse biopsies were used. These preliminary findings warrant testing in a larger cohort of relapse patients to confirm whether the miRNA based predictor can select the optimal second line treatment and increase survival.
Leukemia & Lymphoma, 2019
This study aimed to investigate and compare exosomal miR-155, let-7g and let-7i levels as a noninvasive biomarker among patients with refractory/relapsed or responsive DLBCL after R-CHOP treatment and patients receiving R-CHOP. Plasma was collected and exosomes were isolated from plasma. Exosomes confirmed by zeta-seizer, electron microscope, and western blot. Exosomes concentration was investigated by BCA assay. MiR-155, let-7g and let-7i levels were evaluated in plasma-derived exosomes by real-time PCR. Plasma IFN-c and IL-4 level were measured by ELISA assay. We observed the significant increase in the exosomal miR-155 levels (p ¼ .002) and exosomes concentration (p ¼ .001) in refractory/relapsed patients compared to responsive patients and patients receiving R-CHOP. No association was not observed between exosomal miR-155 levels and IPI and disease stage. The significant decrease in IFN-c levels was observed in patients receiving R-CHOP compared to refractory/relapsed or responsive patients (p¼.001). Therefore, exosomal miR-155 might be useful as potential prognostic biomarkers to predict response to treatment in DLBCL patients.
The circulating miRNAs as diagnostic and prognostic markers
Clinical Chemistry and Laboratory Medicine (CCLM), 2018
A large portion of the human genome transcribes RNA sequences that do not code for any proteins. The first of these sequences was identified in 1993, and the best known noncoding RNAs are microRNA (miRNAs). It is now fully established that miRNAs regulate approximately 30% of the known genes that codify proteins. miRNAs are involved in several biological processes, like cell proliferation, differentiation, apoptosis and metastatization. These RNA products regulate gene expression at the post-transcriptional level, modulating or inhibiting protein expression by interacting with specific sequences of mRNAs. Mature miRNAs can be detected in blood plasma, serum and also in a wide variety of biological fluids. They can be found associated with proteins, lipids as well as enclosed in exosome vesicles. We know that circulating miRNAs (C-miRNAs) can regulate several key cellular processes in tissues different from the production site. C-miRNAs behave as endogenous mediators of RNA translati...
Translational Research, 2021
HANNOVER, GERMANY Lung cancer (LC) is the leading cause of cancer-related death worldwide and miR-NAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of 3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for nonÀsmall cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in D 6 1 X Xtumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Development of a circulating miRNA assay to monitor tumor burden: From mouse to man
Molecular Oncology, 2015
Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 ml tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm 3 and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n ¼ 16) compared to healthy controls (n ¼ 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies.