MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae (original) (raw)
Related papers
Journal of Integrative Plant Biology, 2008
Histone methylation homeostasis is achieved by controlling the balance between methylation and demethylation to maintain chromatin function and developmental regulation. In animals, a conserved Jumonji C (JmjC) domain was found in a large group of histone demethylases. However, it is still unclear whether plants also contain the JmjC domain-containing active histone demethylases. Here we performed genome-wide screen and phylogenetic analysis of JmjC domain-containing proteins in the dicot plant, Arabidopsis, and monocot plant rice, and found 21 and 20 JmjC domain-containing, respectively. We also examined the expression of JmjC domain-containing proteins and compared them to human JmjC counterparts for potential enzymatic activity. The spatial expression patterns of the Arabidopsis JmjC domain-containing genes revealed that they are all actively transcribed genes. These active plant JmjC domain-containing genes could possibly function in epigenetic regulation to antagonize the activity of the large number of putative SET domain-containing histone methyltransferase activity to dynamically regulate histone methylation homeostasis.
THE PLANT CELL ONLINE, 2010
Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin b-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex. The tig1 deletion mutant was nonpathogenic and defective in conidiogenesis. It had an increased sensitivity to oxidative stress and failed to develop invasive hyphae in plant cells. Using affinity purification and coimmunoprecipitation assays, we identified several Tig1-associated proteins, including two HDACs that are homologous to components of the yeast Set3 complex. Functional analyses revealed that TIG1, SET3, SNT1, and HOS2 were core components of the Tig1 complex in M. oryzae. The set3, snt1, and hos2 deletion mutants displayed similar defects as those observed in the tig1 mutant, but deletion of HST1 or HOS4 had no detectable phenotypes. Deletion of any of these core components of the Tig1 complex resulted in a significant reduction in HDAC activities. Our results showed that TIG1, like its putative yeast and mammalian orthologs, is one component of a conserved HDAC complex that is required for infectious growth and conidiogenesis in M. oryzae and highlighted that chromatin modification is an essential regulatory mechanism during plant infection.
PLOS Genetics, 2015
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di-and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up-and down-regulated, respectively, PLOS Genetics |
Molecular Plant Pathology, 2019
Histone acetylation has been established as a principal epigenetic regulatory mechanism in eukaryotes. Sas3, a histone acetyltransferase belonging to the largest family of acetyltransferase, MYST, is the catalytic subunit of a conserved histone acetyltransferase complex. To date, the functions of Sas3 and its orthologues have been extensively studied in yeast, humans and flies in relation to global acetylation and transcriptional regulation. However, its precise impact on development and pathogenicity in fungal plant pathogens has yet to be elucidated. Considering the importance of Sas3 in H3K14 acetylation, here we investigate the roles of its orthologue in the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Unlike a previously reported Sas3 deletion in yeast, which led to no remarkable phenotypic changes, we found that MoSAS3 deletion alone had a profound effect on fungal growth and development, including asexual reproduction, germination and appressorium formation in M. oryzae. Such defects in pre-penetration development resulted in complete loss of pathogenicity in the deletion mutant. Furthermore, genetic analysis of MoSAS3 and MoGCN5 encoding a Gcn5-related N-acetyltransferase family histone acetyltransferase suggested that two conserved components of histone acetylation are integrated differently into epigenetic regulatory mechanisms in the yeast and a filamentous fungus. RNA-seq analysis of ΔMosas3 showed two general trends: many DNA repair and DNA damage response genes are up-regulated, while carbon and nitrogen metabolism genes are down-regulated in ΔMosas3. Our work demonstrates the importance of MYST family histone acetyltransferase as a developmental regulator and illuminates a degree of functional variation in conserved catalytic subunits among different fungal species.
Molecular Plant-Microbe Interactions®, 2018
Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 plays important roles in maintaining genome integrity and surviving DNA damage. Here, we investigated the implications of Rtt109-mediated response to DNA damage on development and pathogenesis of the rice blast fungus Magnaporthe oryzae (anamorph: Pyricularia oryzae). The ortholog of Rtt109 in M. oryzae (MoRtt109) was found via sequence homology and its functionality was confirmed by phenotypic complementation of the Saccharomyces cerevisiae Rtt109 deletion strain. Targeted deletion of MoRtt109 resulted in a significant reduction in acetylation of H3K56 and rendered the fungus defective in hyphal growth and asexual reproduction. Furthermore, the deletion mutant displayed hypersensitivity to genotoxic agents, confirming the conserved importance of Rtt109 in genome integrity maintenance and genotoxic stress tolerance. Elevated expression of DNA repair genes and the results of the comet ...
Scientific reports, 2015
DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis. D NA methylation is a common epigenetic modification of DNA in eukaryotes that has crucial roles in cellular processes including genome regulation and development 1-3 . Eukaryotic DNA methylation occurs almost exclusively in cytosine bases and is usually associated with transposable elements and repeats sequences of many organisms, maintaining repressive chromatin state 3,4 . Recently, studies on flowering plants and mammalian stem cells revealed that DNA methylation takes place not only in promoter regions of genes, transposable elements and repeat sequences but also in transcribed regions of genes 4-7 . In plants and mammals, defect in DNA methylation has been shown to result in pleiotropic morphological abnormalities and embryonic lethality, respectively, attesting to the importance of this modification during developmental processes . Implication of DNA methylation in coordinating developmental programs of higher eukaryotes is based on global reprogramming of methylation landscape and/or gene imprinting through separable genetic pathways involving maintenance (DNMT1) and de novo DNA methyltransferases (DNMT3) during development 9-11 .
Applied and Environmental Microbiology, 2013
The mechanisms involved in substrate-dependent regulation of a Magnaporthe oryzae gene encoding a cellulase which we designate MoCel7C (MGG_14954) were investigated. The levels of MoCel7C transcript were dramatically increased more than 1,000fold, 16 to 24 h after transfer to a medium containing 2% carboxymethylcellulose (CMC), while levels were very low or undetectable in conventional rich medium. Green fluorescent protein reporter assays showed that the MoCel7C promoter was activated by cello-oligosaccharides larger than a pentamer. CMC-induced activation of the MoCel7C promoter was suppressed by glucose and cellobiose. Chromatin immunoprecipitation assays revealed that histone H3 methylation on lysine 4 (H3K4) at the MoCel7C locus was associated with activation of the gene by CMC. Consistently, CMC-induced MoCel7C gene activation was drastically diminished in a knockout (KO) mutant of the MoSET1 gene, which encodes a histone lysine methyltransferase that catalyzes H3K4 methylation in M. oryzae. Interestingly, however, MoCel7C transcript levels under noninducing conditions were significantly increased in the MoSET1 KO mutant, suggesting that MoSET1 directly or indirectly plays a role in both activation and suppression of the MoCel7C gene in response to environmental signals. In addition, gene expression and silencing vectors using the MoCel7C promoter were constructed.
PLoS genetics, 2015
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di-and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or-me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and-me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up-and down-regulated, respectively,
2021
The strict suppression and reprogramming of gene expression are necessary at different development stages and/or in response to environment stimuli in eukaryotes. In Rice Magnaporthe oryzae pathosystem, effectors from pathogen are kept transcriptionally silenced in the vegetative growth stage and are highly expressed during invasive growth stage to adapt to the host environment. However, the mechanism of how such effectors are stably repressed in the vegetative stage and its roles during rice blast infection remain unclear so far. Here, we showed that all subunits of Polycomb Repressive Complex 2 are required for such repression by direct H3K27me3 occupancy and pathogenic process in M. oryzae. Suppression of polycomb-mediated H3K27me3 causes an improper induction of effectors during vegetative growth thus simulating a host environment. Notably, the addition subunit P55 not only acts as the bridge to connect with core subunits to form a complex in M. oryzae, but also recruits Sin3 hi...