Intensity limitations due to space charge for bunch compression in synchrotrons (original) (raw)
Related papers
Longitudinal bunch dynamics study with coherent synchrotron radiation
Physical Review Accelerators and Beams, 2016
An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m ΒΌ 8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.
Compensating effect of the coherent synchrotron radiation in bunch compressors
Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line's end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL's arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam's quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
Emittance growth and energy loss due to coherent synchrotron radiation in a bunch compressor
Physical Review Special Topics-accelerators and Beams, 2000
Bunches of high charge (10 nC) are compressed in length in the CTF II bunch compressor from 1.2 mm rms to less than 0.4 mm. The short bunches start to radiate coherently, thus affecting the horizontal and longitudinal phase spaces of the beam. This paper reports the results of measurements and simulations concerning the increase of the beam emittance and the impact on the energy distribution. Beam emittances were measured for different bunch compression factors and bunch charges. For each compressor setting, the energy spectrum of the beam was recorded in order to measure the energy loss due to coherent synchrotron radiation. For bunch charges of 10 nC a maximum increase of the horizontal emittance of 50% was observed at full compression, while the mean beam energy decreased by 5% from 39 MeV to 37 MeV. Both effects were correlated with an increase of the energy spread from 2.3% to 8.5% rms. The experimental results are compared with simulations.
Emittance Growth during Bunch Compression in the CTF-II
Physical Review Letters, 2000
Measurements of the beam emittance during bunch compression in the CLIC Test Facility CTF-II are described. The measurements were made with di erent beam charges and di erent energy correlations versus the bunch compressor settings which w ere varied from no compression through the point of full compression and to over-compression. Signi cant increases in the beam emittance were observed with the maximum emittance occuring near the point of full maximal compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.
Control of synchrotron radiation effects during recirculation with bunch compression
2015
Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.
Numerical Analysis of Space Charge Effects in Electron Bunches at Laser-Driven Plasma Accelerators
Central European Journal of Physics, 2010
Laser-driven Plasma Accelerators (LPA) have successfully generated high energy, high charge electron bunches which can reach many kA peak current, over short distances. Space charge issues, even in transport lines as simple as a drift section, have to be carefully taken into account since they can degrade the beam quality, preventing any further application of such electron beams. We analyse the space charge effects within an electron bunch with numerical simulations in order to assess their effect on the beam. We use LPA beam parameters published in previous experimental studies. These studies can give an indication of the working point where space charge can dominate the beam dynamics and has to be taken into account in the application of such beams.
Longitudinal Beam Dynamics and Coherent Synchrotron Radiation at cSTART
2021
The compact STorage ring for Accelerator Research and Technology (cSTART) project aims to store electron bunches of LWFA-like beams in a very large momentum acceptance storage ring. The project will be realized at the Karlsruhe Institute of Technology (KIT, Germany). Initially, the Ferninfrarot Linac- Und Test-Experiment (FLUTE), a source of ultra-short bunches, will serve as an injector for cSTART to benchmark and emulate laser-wakefield accelerator-like beams. In a second stage a laser-plasma accelerator will be used as an injector, which is being developed as part of the ATHENA project in collaboration with DESY and Helmholtz Institute Jena (HIJ). With an energy of 50 MeV and damping times of several seconds, the electron beam does not reach equilibrium emittance. Furthermore, the critical frequency of synchrotron radiation is 50 THz and in the same order as the bunch spectrum, which implies that the entire bunch radiates coherently. We perform longitudinal particle tracking simu...
2024
Beam-driven plasma wakefield acceleration (PWFA) is a promising technique to generate high-energy electron bunches for future electron-positron colliders. Longitudinal shaping of high-charge drive beam is highly desired for achieving high-transformer ratio and loading high-charge witness beam. However, the existing shaping schemes either focused on relatively low-charge bunch shaping or accompanied with significant charge-loss rate (typically over 50%). In this paper, a coherent-synchrotron-radiation-free shaping scheme based on velocity modulation is proposed to generate a high-charge beam with a linearly ramped profile. A >10 kA-peak-current shaped beam containing >50 nC charge with a low charge-loss rate is demonstrated by a start-to-end simulation, and the tunabilities of the beam charge and the peak current, and the robustness of the proposed shaping scheme are also discussed. When loaded by a 3 nC witness beam, a >GV=m accelerating electric field with a transformer ratio larger than 4 can be achieved in a uniform plasma for the shaped drive beam, providing the possibility of high-transformer-ratio PWFA for a high-charge beam.
Generalized threshold of longitudinal multibunch instability in synchrotrons
2024
Beam stability is a crucial requirement for all particle accelerators. Coupled-bunch instability (CBI) is driven by beam interaction with narrowband impedance of the resonant accelerator components. Loss of Landau damping (LLD) for a single bunch is mainly determined by broadband impedance and can lead to undamped bunch oscillations. For the first time, we solve numerically the longitudinal stability problem in a self-consistent way for a general case of two impedance types and propose a simple analytical criterion describing how the obtained LLD and CBI thresholds are combined. We demonstrate that LLD can modify the CBI mechanism and reduce the instability threshold even below the LLD threshold. These findings allow the existing beam observations in CERN Super Proton Synchrotron and Large Hadron Collider to be explained and should be considered in design of the future accelerators.