Numerical investigation of the origin of vortex asymmetry of flows over bodies at large angle of attack (original) (raw)

1990

Abstract

The occurrence of the flow about a slender body of revolution placed at incidence to an incoming stream is numerically examined for angles of attack ranging from 20 to 80 degrees and a Reynolds number of 200,000 based on maximum body diameter. Over a certain range of Reynolds numbers, the trend of flowfields around slender bodies at incidence can be roughly divided into three main categories: (1) at alpha = 0-30 deg, the flow is steady and symmetric; (2) at alpha = 30-60 deg, the flow under normal conditions is usually asymmetric, but the level of the asymmetry depends on the amount of disturbances present on the tip of the body; and (3) at alpha 60-90 deg, the flow in the wake of the body acts in a fashion similar to that of the Karman vortex shedding behind a two-dimensional circular cylinder. For each of these categories the range of incidence may change by + or - 10 degrees, depending on the quality of flow, or body finish.

David Degani hasn't uploaded this paper.

Let David know you want this paper to be uploaded.

Ask for this paper to be uploaded.